

:)U V KNOX LIBRARY
- .'AL POSTGRADUATE SCHOOl

MONTEREY CA 93943-5101

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

OBJECT-ORIENTED PROGRAMMING: AN
ASSESSMENT OF FUNDAMENTAL CONCEPTS

AND DESIGN CONSIDERATIONS

by

Alan Lee Fink

March 1992

Thesis Advisor: Michael L. Nelson

Approved for public release; distribution is unlimited.

T259770

CURI7Y CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
n REpoRT sEcURITy cLAsslFlcATroN UNCLASSIFIED

a SECURITY CLASSIFICATION AUTHORITY

ib. RESTRICTIVE MARKINGS

3 blsTRIBUTI6N/AVAILABIUTY 6P RER6RT
Approved for public release;

distribution is unlimited
b. dEcLAssIPIcATIoN/DoWNgRANNg SCHEDULE

PERFORMING ORGANIZATION REPORT NUMBER(S)

Monterey, Ca 93943-5000
5. MonItoRIng oRgAKIIzaTIon Rf>oRT NUMbeR(S)

a NAME OF PERFORMING ORGANIZATION
Computer Science Dept.

Javal Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

cs

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

c ADDRESS (City, State, and ZIP Code)

/lonterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. 6PPICE SYMBOL
(if applicable)

9 RR6cUREMENT INSTRUMENT IDENTIFICATION NUMBER

10 s6URcE 6F fUNdINg NUMBERSc. ADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO.

RRoJecT
NO.

TASK
NO.

WoRk UNIT

—

ACCESSION NO

1 . TITLE (Include Security Classification)

)BJECT-ORIENTED PROGRAMMING: AN ASSESSMENT OF FUNDAMENTAL CONCEPTS AND DESIGN CONSIDER-
ATIONS (U)

I PERSONAL AUTHoR(S)

ink, Alan Lee
h. TYPE 6F RER6RT

taster's Thesis

13b. TIME C6VERED
FROM . TO

.

14. DATE OF REPORT (Year, Month, Day)

March 1992

15. PAGE66UNT
162

•> SUPPLEMENTARY NOTATION ^ view$ expressed ^ this thesis are those of the author md do not reflect the

fficial policy or position of the Department of Defense or the United States Government.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB GROUP Object-Oriented Analysis Object-Oriented Design

Object-Oriented Programming Object-Oriented Programming Language

'

. ABSTRACT (Continue on reverse if necessary and identify by block number)

The latest buzzword penetrating the professional computer science literature is Object-Oriented Programming,

lomputer scientists extol its theoretical virtues while developers explore its potential for streamlining the process of

l>ftware development. Amidst all this activity there remains substantial confusion about fundamental concepts and

|e programming language mechanisms which implement these concepts. Too often, students of object-oriented pro-

(amming mistake proficiency in an object-oriented language for efficient application of object-oriented techniques.

;ie immediate consequence is poorly conceived, sometimes conflicting, efforts at exploiting reusability, information

Iding and other object-oriented capabilities.

This thesis reviews the benefits attributed to object-oriented programming, arrives at definitions for fundamental

Incepts, advances recommendations for conducting object-oriented analysis and object-oriented design, and reviews

sine tradeoffs which designers need to consider when developing object-oriented classes and hierarchies.

blsTRIBUTIoN/AVAILABlLITY6P AbsTRAcT
^ UNCLASSIFIED/UNLIMITED fj SAME AS RPT. rj DTIC USERS

21. AbsTRAcT SECURITY cLAsslPlcATI6N

UNCLASSIFIED
IT NAME OF RESPONSIBLE INDIVIDUAL
PA.T Michael L. Nelson

22c. OFFICE SYMBOL
CS/NE

22b. TELEPHONE (Include Area Code)

(408)646-2026

>FORM1473,84MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

OBJECT-ORIENTED PROGRAMMING: AN
ASSESSMENT OF FUNDAMENTAL CONCEPTS

AND DESIGN CONSIDERATIONS

by

Alan Lee Fink

Lieutenant, United States Navy

BA., Philosophy, Maryland University, 1979

BA., Economics, Maryland University, 1979

M.S., Mineral Economics, Pennsylvania State University, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

ABSTRACT

The latest buzzword penetrating the professional computer

science literature is Object-Oriented Programming. Computer

scientists extol its theoretical virtues while developers

explore its potential for streamlining the process of software

development. Amidst all this activity there remains

substantial confusion about fundamental concepts and the

programming language mechanisms which implement these

concepts. Too often, students of object-oriented programming

mistake proficiency in an object-oriented language for

efficient application of object-oriented techniques. The

immediate consequence is poorly conceived, sometimes

conflicting, efforts at exploiting reusability, information

hiding and other object-oriented capabilities.

This thesis reviews the benefits attributed to object-

oriented programming, arrives at definitions for fundamental

concepts, advances recommendations for conducting object-

oriented analysis and object-oriented design, and reviews

some tradeoffs which designers need to consider when

developing object-oriented classes and hierarchies.

in

Mm
a, I

TABLE OF CONTENTS

I . INTRODUCTION 1

A. COMPLEXITY MANAGEMENT 2

1 . Abstraction 2

2 . Information Hiding 3

3 . Reusability 4

4 . Extendibility 5

5 . Maintainability 6

B. THESIS MOTIVATION 6

C. THESIS ORGANIZATION 7

II . FUNDAMENTAL OBJECT-ORIENTED CONCEPTS 8

A . OBJECTS 9

1

.

Definition 9

2. Identity 11

3 . Persistence 12

4 . Conceptual Distinctions 13

a . Objects and Programs 13

b . Objects and Data 13

c . Objects and Equality 13

B . CLASSES 14

1 . Definition 15

2 . Classes as Abstract Data Types 18

3. Classes and Encapsulation 20

4 . Categories of Classes 21

a. Abstract Classes 21

b

.

Concrete Classes 22

iv

UVJUL.CJ IMNUA LIDKAKY
NAVAL POSTGRADUATE SCHOOl
MONTEREY CA 93943-5101

c. Virtual Classes 22

d. Pure Virtual/Deferred Classes 22

e . Parameterized Classes 23

f . Metaclasses 24

5 . Epistemological Issues 25

a. Objects of Knowledge or Objects of Belief?. 25

C. INHERITANCE 2 6

1. Definition 26

2. Inheritance Elasticity 29

a. Logical Possibilities 30

b. Behavior Compatibility 32

c. Signature Compatibility 34

d. Name Compatibility 35

e

.

Selective Inheritance 35

3 . Specialization 36

4 . Multiple Inheritance 38

5 . Delegation 39

D. COMPOSITION 41

E . POLYMORPHISM 43

1 . Abstract Qualities 44

2 . Polymorphic Names 45

3 . Polymorphic Names and Arguments 45

4. Varia 46

F . CONCLUS IONS 4 6

III. 00 DEVELOPMENT 47

A. SOFTWARE ENGINEERING METHODOLOGIES 47

1 . Lifecycle Organization 48

2 . Conceptual Organization 51

3. Notational Organization 52

B . 00 DEVELOPMENT APPROACHES 53

1 . Coad/Yourdon 53

2 . Booch 55

a. Techniques/Notation 56

b

.

Activities 58

3 . Wirfs-Brock 59

C. RECOMMENDED 00 ANALYSIS AND DESIGN METHODS 61

IV. FUNCTIONAL DECOMPOSITION AND SUBCLASS RESPONSIBILITY. . . 65

A. FUNCTIONAL DECOMPOSITION 65

1. Functional Decomposition and Subclass
Responsibility 65

a. Subclass Responsibility 68

b. Design Heuristics for Subclass
Responsibility 70

(1) Cohesion 70

(2

)

Coupling 72

(3) Factoring 74

V. PARADIGM CONFLICTS 77

A. ENCAPSULATION VULNERABILITIES 78

1. External Interface 79

a. Representation Access 7 9

vi

b. Creation and Initialization 80

c

.

Auxiliary Methods 81

2 . Internal Interface 81

a . Representation Access 82

b . Embedded Direct Access 82

c. 'Self'/'This' Invocation 83

3 . Name Conflicts 84

a

.

Variable Name Conflicts 85

b

.

Method Name Conflicts 85

c . Name Conflict Remedies 8 6

4 . Hierarchy/Lattice Modification Problems 87

a. Inheritance Visibility 88

(1) Excluding Operations 88

(2) Subtyping 8 9

(3) Remedies 89

5 . Multiple Inheritance 91

6 . Design Recommendations 94

B . COMPOSITION AND INHERITANCE 96

1 . Composition Reviewed 97

2 . Recognizing Composition 101

3 . Composition or Inheritance? 101

4 . The Clock_Radio Problem 104

a. Problem Statement 104

b. C++ Solution 107

(1) Inheritance 108

vii

(2) Composition 110

c. Smalltalk Solution 113

(1) Inheritance 114

(2) Composition 116

d. CLOS Solution 118

(1) Inheritance 119

(2) Composition 120

5 . Composition Granularity 121

VI . CONCLUSIONS 124

A. SUGGESTIONS FOR FUTURE RESEARCH 124

1. Specialization 124

2 . Reusability 124

3 . Knowledge Allocation 125

4 . Functional Decomposition 125

B. CONCLUSIONS 126

APPENDIX A. C++ CODE 128

A. C++ CLASS DEFINITIONS 128

B. X_Y_POSIT CLASS METHODS 131

C. TIME 131

D . RADIO CLASS METHODS 132

E . ELECTRIC_CLOCK CLASS METHODS 135

F . CLOCK_RADIO CLASS METHODS 137

G. COMPOSITE_CLOCK_RADIO CLASS METHODS 138

APPENDIX B . SMALLTALK CODE 142

A. SMALLTALK CLASS DEFINITIONS 142

viii

B. XYPOSIT CLASS METHODS 143

C. SIMPLETIME CLASS METHODS 143

D . RADIO CLASSS METHODS 143

E . ELECTRICCLOCK CLASS METHODS 145

F . CLOCKRADIO CLASS METHODS 146

G. COMPOSITECLOCKRADIO CLASS METHODS 14 6

APPENDIX C. CLOS CODE 149

A. CLOS CLASS DEFINITIONS 149

B. X_Y_POSIT CLASS METHODS 150

C. TIME 150

D . RADIO CLASS METHODS 150

E . ELECTRIC_CLOCK CLASS METHODS 152

F. CLOCK_RADIO CLASS METHODS 153

G. COMPOSITE_CLOCK_RADIO CLASS METHODS 154

LIST OF REFERENCES 157

INITIAL DISTRIBUTION LIST 162

IX

LIST OF FIGURES

Figure 1

:

Subclass Responsibility 67

Figure 2 : Clock_Radio Responsibilities 105

Figure 3 : Inheritance Class Relationships 106

Figure 4 : Composition Object Relationships 106

x

TABLE OF ABBREVIATIONS

ADT Abstract Data Type

CAD Computer Aided Design

CLOS Common Lisp Object System

DFD Data Flow Diagram

ER Entity Relationship

MI Multiple Inheritance

00 Object-Oriented

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OOP Object-Oriented Programming

OOPL Object-Oriented Programming Language

XI

ACKNOWLEDGEMENTS

The writer wishes to recognize the efforts made by his

adviser, MAJ Michael L. Nelson, to protect society from the

dissemination of false doctrine and weak interpretation. Dr.

Robert B. McGhee, the second reader, impressed upon the writer

the importance of testing theoretical conclusions with actual

implementations. Finally, the writer recognizes with

gratitude the debt owed to his recently deceased father,

Donald A. Fink. It was from his father that the writer

acquired certainty of purpose, intellectual curiousity, and

analytic discipline.

xn

I . INTRODUCTION

Acolytes of object-oriented (00) concepts and

methodologies maintain that this new approach to software

development promises to be more than just another set of

programming languages. Rather, it represents a comprehensive

philosophy for planning, designing, and implementing solutions

to complex problems. An explosion of articles, magazines,

books, and conferences dedicated to exploring and popularizing

00 techniques occurred during the 1980' s. This concentration

of effort notwithstanding, the 00 philosophy has yet to arrive

at a consolidated point-of-view on many fundamental concepts.

The objective of this thesis is to review the potential

benefits of 00 techniques, to define fundamental 00 concepts,

to advance recommendations for organizing 00 design, and to

demonstrate conflicts among 00 mechanisms that dilute the

favorable properties ascribed to object-oriented programming

(OOP) .

The beneficial properties of the 00 approach to software

development are briefly reviewed in this chapter. These

properties are commonly viewed as desirable from the

perspective of software engineering. Not all the properties

are unique to the 00 philosophy, much less common to all

object-oriented programming languages (OOPLs) . Nevertheless,

1

the 00 philosophy represents a comprehensive attempt at

integrating all the concepts and facilities affecting the

software lifecycle in a fashion that enhances the desirable

properties

.

A. COMPLEXITY MANAGEMENT

Software development increasingly occurs in an industrial

setting typified by product complexity, system longevity, and

incessant product evolution. (Jacobson, 1991) 00 techniques

have been employed for developing complex software products

such as compilers, databases, computer aided design (CAD)

systems, simulations, meta models, operating systems,

spreadsheets, signal processors, and control systems.

(Rumbaugh, 1991) Development of such complex systems requires

architectures, methods, and processes that divide system

development into smaller parts and that can handle change

efficiently. (Jacobson, 1991) The following subsections list

desirable software features which the 00 approach to software

development attempts to innovate, thus making it well suited

for managing complex application problems

.

1 . Abstraction

Abstraction is used to simplify the design of a
complex system by reducing the number of details that
must be considered at the same time. (Berzins, 1991,
pg. 79)

Abstraction is an intellectual process that

facilitates the comprehension of complex entities and

processes through simplification. This simplification allows

knowledge to be expressed as generalized, essential

information which can be absorbed and understood by human

beings

.

The level of detail necessary to formulate an

abstraction varies with the requirements of the problem.

(Booch, 1987) In the context of 00 analysis, design, and

programming, abstraction focuses attention on the behaviors

and attributes of objects rather than on the implementation

details (which vary from one language to another) . This

method of thinking about problem entities allows problems to

be pursued as successive refinements, with each refinement

constituting an abstraction manifesting a particular level of

detail. Hence, designs and programs can be conceived of as

multileveled structures of abstractions.

2 . Information Hiding

Information hiding emphasizes the need to separate
function from implementation . Apart from continuity,
it is also related to the requirements of
decomposability r composability and understandabil ity

:

to separately develop the modules of a system, to
combine various existing modules r or to understand
individual modules, it is indispensable to know what
each of them may and may not expect from the others.
(Meyer, 1988, pg. 23)

Information hiding 1 is a technique for minimizing

interdependencies among separately written modules. (Snyder,

Sometimes termed encapsulation in the 00 literature.

3

198 6) Knowledge about data structure and function

implementation is kept private by forcing interaction with

these structures through an external interface. In the wider

context of software development, information hiding promotes

the independent construction of cooperating modules, and, most

importantly, isolates the effects of implementation

modification to the affected module. So long as external

interfaces are stable, implementation details can be modified

without impinging upon users of the interface. Hence,

software maintenance becomes localized, no longer a perilous

search for linkages in interrelated program modules, with

consequent economies in time, human, and onetary resources.

Information hiding is a critical metric of any OOPL.

Consequently, individual OOPLs should be studied to determine

the degree to which information hiding is enforced.

3 . Reusability

Reuse may be defined as the effective ability to
incorporate objects created for one software system
into a different software system. The essence of
reuse is the ability to take all or part of a product
and completely and correctly embed it within a new
product that may be constituted and structured quite
differently. (Wasserman, 1991, pg. 55)

Reusability clearly coincides with 'why reinvent the

wheel' modes of thinking. Even limited software development

experience is enough for one to notice that programs exhibit

pervasive commonalities with respect to algorithms, data

structures, and functions. Reusability is a language property

4

that allows previously developed software to be readily

incorporated into new software. Two substantial benefits flow

from reuse: (1) development effort is reduced; and, (2) reused

code has (presumably) been tested and verified2
.

The principal 00 mechanisms for achieving reuse are

inheritance, polymorphism, and dynamic binding. Much of the

value of programming in the 00 environment arises from the

capability to use previously developed code stored in software

libraries. Developers may also be familiar with a problem's

requirements and important abstractions; consequently,

opportunities for reusing not only software, but entire

designs and requirements also exist. (Booch, 1991)

4 . Extendibility

Extendibility is the ease with which software products
may be adapted to changes in requirements . (Meyer,
1988, pg. 5)

Extendibility is a concept allied to, but distinct

from, reusability. It encompasses those properties/mechanisms

which enable new code to be developed as extensions to

previously written code. Extendibility assumes greater

importance as problem understanding improves, resulting in new

requirements. As program scale grows, extendibility is best

achieved through design simplicity and modular

2This does not, however, relieve developers of the burden
of ensuring that borrowed code still functions properly in its
new environment. (Perry, 1990

decentralization. (Meyer, 1988) In the 00 environment,

extendibility is realized through the application of

inheritance techniques to class definitions in class

hierarchies

.

5 . Maintainability

A designer endeavors to organize a design so that it
is resilient to change; a packaging that will remain
stable over time is sought. The answer is to separate
those parts of the system that are intrinsically
volatile from those parts that are likely to be
stable. (Coad and Yourdon, 1991, pg. 15)

Maintainability is principally an economic concept.

It refers to the efficiency by which modifications can be

introduced over the software lifecycle. Technically,

maintainability concerns the degree to which linkages in

program elements magnify the effects of modifications.

Economically, maintainability reflects the cost required to

correct bugs, to modify code, or to extend code. The primary

cost is the human effort required to police change. Software

which collectively exhibits strong abstraction, information

hiding, reusability, and extendibility generally manifest

favorable maintainability properties.

B. THESIS MOTIVATION

In point of fact, the lack of a standardized conceptual

foundation for many 00 ideas has resulted in an uneven record

with respect to the completeness with which individual OOPLs

contribute toward achieving a unified realization of the

beneficial software properties. One of the purposes of this

thesis is to indicate the mapping of fundamental 00 concepts

to abstraction, information hiding, reusability,

extendibility , and maintainability . Given these associations,

it is possible to investigate how the interactions of language

mechanisms which engineer the fundamental 00 concepts can

mitigate the desirable properties should potential conflicts

not be thoroughly understood. A primary objective, therefore,

is to facilitate better 00 software development by

acknowledging that conflicts exist which must be accounted for

during analysis, design, implementation, and maintenance.

C. THESIS ORGANIZATION

Chapter II surveys the 00 literature in attempting to

formulate definitions for fundamental 00 concepts. Chapter

III draws upon the 00 literature to advance recommendations

for conducting object-oriented analysis (00A) and object-

oriented design (00D) . Chapter IV examines connections

between functional decomposition and subclass responsibility.

Chapter V furthers the aims of Chapter III by investigating

two major 00 problems: (1) conflicts between information

hiding and inheritance mechanisms; and, (2) design conflicts

between composition and inheritance. Finally, Chapter VI

offers conclusions and suggestions for further research.

II. FUNDAMENTAL OBJECT-ORIENTED CONCEPTS

00 methodology is occasionally presented as a Kuhnian

paradigm by which is meant a corpus of scientific work which

". . .defines the legitimate problems and methods of a research

field for succeeding generations of practitioners." (Kuhn,

1962, pg. 10) Budd accepts this departure point, adding that

the 00 paradigm "... forces us to reconsider our thinking about

computation, about what it means to perform computation, about

how information should be structured within a computer."

(Budd, 1991, pg. 3) Essentially, then, the 00 paradigm is

about knowledge representation in the computer environment.

From this perspective, 00 methodology constitutes a new way of

conceptualizing and solving the problems of software

engineering.

Although there currently exist no 00 standards for 00

language designers to observe, considerable consensus exists

as to the primary concepts which formulate the 00 paradigm.

Nevertheless, there remains sufficient semantic variation in

the literature to warrant a thorough review of these concepts.

The balance of this chapter surveys the 00 literature with the

intent of arriving at definitions of fundamental concepts for

use in succeeding chapters

.

A. OBJECTS

Objects occupy a curious dual status. Often, they are

introduced in anthropomorphic terms as the entities (physical

or ideational) in the problem domain. Alternatively, they are

presented as the primary programming constructs in 00

languages; constructs which 'closely' parallel the entities in

the problem domain. Although the differences between the two

views are minimal in terms of practical consequences for 00

analysis and design, the distinction should be bourn in mind

since the latter emphasizes that objects are constrained not

only by their real-world possibilities but also by the

capabilities of computers and programming languages.

1 . Definition

Objects encapsulate both state and behavior

.

(Halbert
and O'Brien, 1987, pg . 72)

Objects are entities that combine the properties of
procedures and data since they perforin computations
and save local state. (Stefik and Bobrow, 1986, pg. 41)

An object has state, behavior, and identity; the
structure and behavior of similar objects are defined
by their common characteristics; the terms instance
and object are interchangeable. (Booch,1991, pg. 77)

Objects are autonomous entities that respond to
messages or operations and share a state.
(Wegner, 1987, pg. 168)

Several salient points can be drawn from these

definitions. First, objects have a structure (representation),

which preserves the state of an object. An object may

manifest many states over the course of its existence (i.e.,

9

its state may change); hence, objects can have a history.

Second, objects exhibit observable behavior. Objects

communicate with one another by passing messages to elicit

needed behavior 1
. Third, objects have, in some sense, an

existential status that uniquely distinguishes each object

from all others. This status is usually termed identity.

Fourth, the fact that an object has an identity and can have

a history implies that it can exist beyond the lifetime of the

program (s) in which the object may have been created or used.

This quality is termed persistence. (Loomis, 1991)

A few clarifications are in order. Objects can be

created that do not have a structure However, it is

difficult to isolate what distinguishes these entities from

procedures, and calls into question the existential status of

such entities - that is, must not there be a 'some' for an

object to be something? Behavior is the set of actions an

object can undertake. In the context of a program, an object

sends a message to another object (or itself) requesting a

Message-passing is one mechanism for managing object
communication. Messages are sent "...to an object to tell it
to perform one of its methods." (Nelson, 1991, pg. 4)

Messages are essentially legal invocations of methods
(behaviors) associated with objects. Legal invocations are
those made to methods which objects have made available. Note
that not every OOPL utilizes message-passing as the mechanism
for inter-object communication. CLOS (Keene, 1989), for
example, uses generic function calls. This sometimes leads to
what is called the "message passing paradigm" in which ".

. .the
only way to access an object or any of its variables is by
sending it a message." (Nelson, 1991, pg. 4)

10

service offered by the receiving object. The receiving object

determines how best to comply with the request, selecting

among a set of methods (operations) which satisfy the request,

responding in a form that the sender can understand and use.

Hence, there is a semantic quality to behavior. Note that

much of the versatility and confusion in 00 programming arises

from the mechanisms that determine which object receives a

request and which method is selected.

2 . Identity

As stated in the introduction to this chapter, the 00

paradigm constitutes a new approach to representing knowledge

in the computer environment. Specifically, objects, as

programming constructs, achieve a sufficiently elevated level

of abstraction so as to closely parallel their real-world

counterparts. Real-world entities are bounded and

distinguishable. In the computer environment this requires

"...the ability to distinguish objects from one another

regardless of their content, location or addressability, and

to be able to share objects. Object identity enables us to

realize this goal." (Khoshafian and Copeland, 1986, pg.

406)

The practical consequence is that an 00 language

should preserve this existential status as an independent fact

about objects. This existential status can be described as

the space (which is relocatable) in any memory which the

11

object happens to occupy. It can be argued that an 00

language must maintain identity despite changes in an object's

state, address, or user-defined name, and throughout its

lifetime. (Khoshafian and Copeland, 1986) An 00 language

accomplishes this best by maintaining a built-in identifier

for an object that (presumably) does not change. "The failure

to recognize the difference between the name of an object and

the object itself is the source of many kinds of errors in

object-oriented programming." (Booch, 1991, pg. 84) These

errors include assignment operations which orphan objects 2
,

aliasing through assignment (structural sharing) , and

inappropriate semantics for equality operators. (Booch, 1991)

3 . Persistence

An object is created, persists for some period of

time, and can be destroyed. Its lifetime may be less than,

parallel to, or exceed that of the program in which it is

created. This last possibility represents a database issue in

general, but with particular refinements for objects; the

identity and nature (class of which it is an instance) of an

object must be preserved along with its state.

2For example, the assignment oJbject_x := object_y renders
inaccessible the original object for which object x was the
name

.

12

4 . Conceptual Distinctions

a. Objects and Programs

The 00 paradigm leads the programmer to an

entirely different perspective on program construction. What

has been described as the traditional imperative approach to

programming consists of procedural modules which act on data.

This perspective leads to a top-down, functional decomposition

of programs. 00 programs consist of objects acting

cooperatively, but autonomously. Cooperative behavior can

achieve various levels of integration, producing system

behavior at the highest levels. The great strength of this

approach is the comparative ease with which complex systems

can be modeled as interacting objects.

b. Objects and Data

Objects are not simply data structures. It is

important to recognize that objects are entities which

manifest both structure and behavior. Moreover, the

implementation of an object's structure should be hidden from

other objects (i.e., encapsulated) for the reasons outlined in

Chapter I . This is not the case for data driven programs in

which data structures are globally accessed and modified.

c. Objects and Equality

Object identity necessitates reviewing in what

respect objects can be said to be equal. Database

applications may require that relational comparisons be

13

available. (Nelson, Moshell, and Orooji, 1990) Most 00

languages allow programmers to generate operations for

determining equality. Variations include reference identity

in which references point to the same object, and structural

identity in which corresponding parts of objects have the same

value. It is worth noting that the semantics of equality and

relational operators in this context do not necessarily follow

the use of normal logic - objects can at once be not greater

than, not equal to, and not less than one another 3
. (Nelson,

Moshell, and Orooji, 1990)

B . CLASSES

A major milestone in the evolution of software engineering

has been the modularization of software components. Berzins

and Luqi define a module as a ". . .conceptual unit in a

software system that corresponds to a clearly identifiable

region of the program text." (Berzins and Luqi, 1991, pg. 13)

From this perspective, modularization is a facet of software

construction which produces "...software systems made of

autonomous elements connected by a coherent, simple

structure." (Meyer, 1988, pg. 11)

Actual modular elements will vary among programming

languages; the essential aspect of modularization is that it

3Nelson, Moshell, and Orooji suggest that there are
contexts in which "...it is inappropriate to say that one
object is greater than or less than another." (Nelson,
Moshell, and Orooji, 1990, pg. 321)

14

promotes conceptual localization of code. This localization

can be exploited to realize other desirable software

properties including data abstraction, encapsulation,

reusability, extendibility , reliability, and maintainability

.

Classes are the key modules in most 00 languages. Note

that this position is taken in view of the fact that objects

are declared as instances of classes. It is perhaps more

accurate to state that classes are the key design modules and

objects, as instances of classes, are the key program modules.

Most 00 languages provide for classes, although a few do

not. The various languages utilizing classes do so for

different purposes, depending upon their overall philosophy.

This section surveys the differing uses for classes.

1 . Definition

A class is a template (cookie cutter) from which
objects may be created by 'create' or 'new'
operations . Objects of the same class have common
operations and therefore uniform behavior . (Wegner,
1987, pg. 169)

A class is a description of one or more similar
objects. In comparison to procedural programming
languages , classes correspond to types. (Stefik and
Bobrow, 1986, pg. 42)

Whereas an object is a concrete entity that exists in
time and space, a class represents only an
abstraction, the 'essence' of an object, as it were.
(Booch, 1991, pg. 93)

A class should allow you to build a taxonomy of
objects on an abstract , conceptual level. (Wirfs-
Brock, Wilkerson, and Wiener, 1990, pg. 22)

15

An object manifests structure and behavior. Groups of

objects may display common structure and behaviors which can

be abstracted into class definitions 4
. Once an object is

identified (declared) as belonging to a particular class, its

structure and behavior can be delimited according to that

common definition. This contributes powerfully toward

reusability: individual objects acquire definition from an

existing class 'template'.

A class typically consists of variables whose values

are either defined individually for each object (instance

variables) , or are defined in the class definition itself as

belonging to all instances (class variab es) , and of methods

which define behavior appropriate to instances of the class.

Some of the methods in a class are auxiliary in the sense that

they carry out operations needed by other methods, but do not

themselves correspond to abstractions which are observable.

40dell presents a philosophical analysis of classes that
begins with describing cognitive categories for discussing
knowledge and knowledge acquisition. (Odell, 1991) His
principle point is that humans formulate their understanding
of objects as concepts, and it is these concepts which are
used to build classes. Concepts can have a name
(representative symbol) , an intension (definition) , and an
extension (the group of objects the concept applies to) . Note
that this way of viewing classes does not require that OOP
objects parallel real-world objects so much as that they
parallel human cognition of these objects. Moreover, this
view also lends itself to defining 'unreal' or imaginary
objects

.

16

These auxiliary methods are a form of knowledge about class

instances which users do not need to know.

An interface to a class consists of those variables

and methods which are visible to other objects and to

subclasses (defined in Chapter II/Section 3)
5

. The interface

available to other objects is called the "external view" and

the interface available to subclasses is called the "internal

view." 6 (Micallef, 1988, pg. 13)

Not every OOPL offers a means for limiting the various

interface visibilities. Those that do (C++, for example)

provide mechanisms for enforcing private and public

distinctions. Private variables and methods represent

knowledge that is not known by other objects, and therefore

are not part of the external or the internal interface.

Public variables and methods are known and integrated into the

external and internal interfaces. Generally, encapsulation is

best enforced if variables are kept private, accessible only

through public methods. An additional level of control can be

applied to the internal interface: variables or methods can be

5An interface can also be viewed as the set of behaviors
an object makes available for use by other objects.

6Note that a third interface to new objects is sometimes
mentioned in the 00 literature. (Micallef, 1988) This
interface involves decisions about the external interface,
initialization procedures, and class variables which will be
made available to instantiations of a class. Also, the
various views are called interfaces (for example, the external
view is the same as the external interface)

.

17

declared protected which renders them visible to subclasses

but not to other objects 7
.

As previously noted, classes also constitute the key

modules in most 00 languages. Class modularity serves the

objectives stated above and will be explored in the following

subsections. The capability of classes to serve as a pattern

for object declaration ensures consistent realization of these

objectives in an 00 program.

2 . Classes as Abstract Data Types

Coad and Yourdon quote the Dictionary of Computing

(Oxford University Press, 1986) in defining data abstraction

as "...the principle of defining a data type in terms of the

operations that apply to objects of the type, with the

constraint that the values of such objects can be modified and

observed only by the use of the operations." (Coad and

Yourdon, 1991, pg.7) Meyer notes that in describing data

structures it is desirable to have complete, precise,

unambiguous descriptions that are not based on the physical

7 In C++, there is an interesting split in control over
the internal interface. (Atkinson and Atkinson, 1991) A
superclass may declare class features to be private,
protected, or public. However, it is the subclass which
determines how public, private, and protected visibility
declarations are inherited. The visibility of inherited
features can be declared public, private, or protected. The
declaration mechanism essentially allows a subclass to
redeclare inherited public features as protected or private,
and inherited protected features as private. Inherited private
features remain private to the superclass - subclasses as well
as users do not enjoy access privileges to these features.

18

representation of the underlying structure. (Meyer, 1988) An

abstract data type (ADT) specifies a class of data structures

". . .not by implementation, but by the list of services

available on the data structures, and the formal properties of

these services." (Meyer, 1988, pp. 53-54)

The data structure and associated services of an ADT

conceptually form a unified whole. The separation of visible

services from implementation details, central to the notion of

an abstract data type, is accomplished by an interface which

describes the services which the type performs. Consequently,

a user of a data type understands the type as a closed

description of behavior, the successful use of which requires

only knowledge of the interface.

In many 00 languages, such as Eiffel (Meyer, 1988) and

C++, classes are equivalent to ADTs . Hence, classes, the

modular units of interaction, assume a specific purpose: the

description of data types. The interactions between modules

(classes) are managed through the type interfaces.

Nevertheless, it is important to understand that the principle

function of classes is to serve as templates for object

instantiation and not as predicate descriptors. (Wegner, 1988)

This critical difference assumes significance when considering

inheritance (described in the next section) in which classes

maintain set/subset relationships to facilitate code sharing.

The mechanisms for inheritance do not always meet the strict

19

requirements for type/subtype behavioral compatibility which

the class/type equivalence requires.

3 . Classes and Encapsulation

Although classes specify the behavior of data types,

as modular software components they also embody the

implementation details of structure and behavior.

Modularization permits the design of interfaces which

encapsulate these implementation details, thereby achieving

the many benefits attributed to information hiding in Chapter

I. The class interface need not include auxiliary methods,

further increasing encapsulation. Hence, the class interface

not only describes services available to users, but limits the

ability of users to directly know, access, or modify the

actual data structure of a class.

Encapsulation represents a property, but not a

responsibility of classes. Programmers must specifically

design interfaces which segregate implementation from

specification, and the 00 philosophy of the language must

support encapsulation by restricting access/manipulation of

data structures to the designed interface. It is curious that

not every 00 language supporting classes enforces

encapsulation as described. Instance variables in Simula, for

example, are directly accessible. (Micallef, 1988) For

reasons adduced in Chapter I, this undesirable condition

increases the linkages among program modules, diluting the

20

reliability of code, and increasing the difficulties attendant

to maintenance.

4 . Categories of Classes

Within the context of software system design, classes

serve varying purposes depending upon the requirements of the

problem and the nature of the knowledge being modeled. These

class roles generally reflect design decisions about how

knowledge of data types should be distributed in the evolving

class structure.

a . Abstract Classes

Abstract classes appear at the higher levels in

inheritance hierarchies (discussed in the next section)

.

Jumping ahead, an abstract class serves as a placeholder of

methods and data common among the descendant classes in a

hierarchy. (Wu, 1991) Hence, an abstract class serves as a

repository of knowledge held in common by all of its

descendent classes. As such, abstract classes are not

intended to serve as templates for object instantiation.

Rather, they eliminate the duplication of knowledge among

related types, thereby reducing coding complexity and

facilitating testing, debugging, and maintenance.

Additionally, abstract classes also promote the design of a

common protocol (interface) among the related types. This

figures importantly in languages emphasizing polymorphism.

21

b. Concrete Classes

Concrete classes are simply classes that are

intended to serve as templates for object instantiation. Note

that a concrete class may or may not be descended from an

abstract class. However, it has been suggested that it is

possible that abstract classes should not be descended from

concrete classes, (de Paula and Nelson, 1991)

c. Virtual Classes

Virtual classes (C++ terminology) contain virtual

methods. Virtual methods are those methods in a class whose

implementations may be overridden (redefined) in descendent

classes. This allows method names and sic .atures to be shared

(see Section E on polymorphism) . It should be noted, however,

that many 00 languages do not include this concept - any

method of any class may be overridden in descendent classes.

d. Pure Virtual/Deferred Classes

Classes may exhibit behavioral commonalities that

designers want to place into abstract classes without forcing

a common implementation. Pure virtual classes (C++

terminology) allow for the specification of interfaces, part

or all of whose methods are to be implemented in descendent

classes 8
.

8The concept of pure virtual functions should not be
confused with the concept of subclass responsibility. Pure
virtual functions are employed to ensure such methods form
part of the interface of descendent classes. Subclass

22

Meyer refines the concept of pure virtual classes,

arguing that such deferred classes (Eiffel terminology)

additionally require the specification of logical pre/post

conditions for deferred implementations. (Meyer, 1988)

Although correct in principle, it is difficult to discern how

this complication assists design since a behavior is elevated

to virtual status precisely because it is shared by

descendants, and should therefore demonstrate the same

semantic properties in descendent implementations.

d. Parameterized Classes

Parameterized classes are a form of generic

structures. Such classes provide methods which operate on

data structures whose types are not completely defined. An

example would be a tree class for which the types of

individual nodes are undefined. Another example would be an

array class containing elements whose types are undefined.

Current 00 languages do not offer parameterized classes,

although C++ designers are currently developing the technique

for eventual introduction. (Budd, 1991)

responsibility derives from the notion of functional
decomposition (see Chapter IV) . Specifically, subclass
responsibility involves decisions about the distribution of
methods among ancestor and descendent classes in cases where
ancestor methods rely on the knowledge that descendants must
implement certain methods

.

23

e. Metaclasses

Abstract, concrete, and virtual classes represent

roles which classes can assume in the context of program

design. In this capacity, classes continue to serve as

patterns for instantiation. Some 00 languages (including

Smalltalk, for example) carry through the object point-of-view

to include all constructs in the language space.

Consequently, classes must be treated as objects as well.

This raises the requirement to create, initialize, and destroy

classes. To accommodate these needs, such languages provide

for metaclasses - classes from which class objects are

instantiated. "A class object is typically the only instance

of a metaclass." (Budd, 1991, pg. 376)

Metaclasses are a conceptual complexity which are,

mildly expressed, difficult to understand. It is difficult

to place an end to the recursion implicit in defining

everything as an object. For example, consider this obscure

passage from Budd describing metaclasses in Smalltalk:

The class Class is a subclass of the class Object/ and
thus, the object Class points to the object Object as its
superclass . On the other hand, the object Object is an
instance of the class Class/ and thus, Object points back to
class. Class Class is itself a class, and thus an instance
of itself. (Budd, 1991, pg . 265)

Classes force instances to exhibit the same

behavior; thus, metaclasses force classes to exhibit the same

behavior. Metaclasses allow for class instances which

24

specialize the behavior of other classes. As an example, a

class may need to override the constructor for an object

defined by another class. The corresponding metaclass would

allow for the overriding of the other class' constructor.

Carried to its logical extreme, the idea that all

constructs in the programming environment are objects requires

that ". . .the metaclass must be considered an object in its own

right, and is therefore created by the metametaclass, which is

in turn created by the metametametaclass, etc." (Nelson, 1990,

pg . 7) Nelson points out that most OOPLs supporting

metaclasses ignore this problem, or simply declare metaclasses

to be special objects provided by the system. (Nelson, 1990)

Metaclasses clearly provide a higher level of

abstraction; nevertheless, they also move away from the real-

world parallelism that 00 languages accentuate, forming a

strange dual definition for classes, and are perhaps best

relegated to theoretical discussions.

5 . Epistemological Issues

a. Objects of Knowledge or Objects of Belief?

An interesting side issue is the epistemological

status of classes. Articles considering class design

ordinarily contain a seemingly harmless footnote to the effect

that design teams should possess at least one subject matter

expert who presumably fully understands the problem domain

from both a theoretical and experiential perspective which

25

supersedes the immediate application problem. At issue is

whether the knowledge embodied by classes must be justified.

As an example, an application modeling certain kinds of

planetary phenomena may start from a Ptolomeic or a Copernican

explanation of behavior and achieve reliable behavioral

results. Yet, only the Copernican theory is justified as

knowledge. If one objective of class design is to mimic the

real-world, then designers should be required to justify to

some degree the knowledge represented by classes. Too often

in application design, belief is substituted for knowledge;

much to the detriment of potential code reuse in new

applications

.

C. INHERITANCE

Inheritance uniquely distinguishes 00 languages from other

programming languages. It has even been called the only

unique contribution of 00 languages. (Korson and McGregor,

1990) Within the family of 00 languages inheritance

mechanisms vary widely. This section reviews the elasticity

with which inheritance can be implemented, drawing out design

implications for various inheritance strategies.

1 . Definition

Inheritance enables the easy creation of objects that
are almost like other objects with a few incremental
changes . Inheritance reduces the need to specify
redundant information and simplifies updating and
modification r since information can be entered and
changed in one place. (Stefik and Bobrow, 1986, pg.41)

26

We adopt the view of Cook who defines inheritance as
a composition mechanism that internalizes inherited
attributes by late (execution time) binding of self-
reference to the inheriting object. (Wegner and
Zdonik, 1988, pg. 57)

Inheritance is here defined narrowly as a mechanism
for resource sharing in hierarchies . (Wegner, 1987,
pg. 169)

A subclass inherits all of the variables and methods
defined for its superclass - regardless of whether
those variables and methods were defined locally in
the superclass or inherited from some other class.
(Nelson, 1991, pg. 2)

Inheritance is a broad concept which serves multiple

ends. Hence, inheritance must be approached from several

perspectives to gain a fuller understanding of its conceptual

diversity and utilitarian purposes.

First, inheritance is primarily a resource sharing

mechanism, greatly extending reusability. The idea that

opportunities for economy of design exist can be drawn from

the observation that classes of objects exhibit conceptual,

behavioral, or structural commonalities. Specifically,

inheritance is a mechanism which permits the definition of one

class to include the specification or implementation of

another class on the basis of these commonalities.

Second, groups of classes can manifest collective

commonalities which result in hierarchical relationships among

the respective class definitions. Inheritance reifies these

relationships into the actual implementation code. In the 00

lexicon, an inheriting class is a subclass of the superclass

27

from which it directly shares implementation code, and it is

a descendent of all classes to which a path (from the subclass

to higher levels in the hierarchy) can be traced. All the

classes for which a given subclass is a descendent constitute

the ancestors of that class.

Third, inheritance is a pliant concept. Depending

upon the nature of the commonalities instigating the decision

to share code, restrictions can be levied which shape the

kinds of code sharing that are permissible. These

formulations of the inheritance mechanism are discussed in the

following subsections. It should be noted, however, that

conceptual and programmatic difficultie i often arise from

language designs which emphasize but do not enforce particular

inheritance restrictions.

Fourth, some 00 languages implement single inheritance

in which a subclass is only allowed to inherit from a single

superclass while other 00 languages implement multiple

inheritance (MI) in which a subclass inherits from one or more

superclasses. MI is a technique which powerfully increases

the opportunities for code reuse. However, MI also introduces

several complications, solutions for which are not uniform.

These problems are discussed in the MI subsection below, and

further examined in Chapter V.

28

Finally, inheritance mechanisms can undermine other

desirable 00 language features. Chapter V considers potential

conflicts engendered by inheritance.

2 . Inheritance Elasticity

As previously stated, classes provide instance

variables, class variables, and methods, and they serve as

templates for object instantiation. Inheritance entails

decisions about the manner in which existing classes can be

modified to form new templates. (Wegner and Zdonik, 1988) To

facilitate discussion, inheritance can be described as a

". . .particular kind of incremental modification mechanism that

transforms a parent entity P with a modifier M into a result

entity R = P+M. " (Wegner and Zdonik, 1988, pg. 55) P and M

consist of sets of attributes (variables and methods) which

may or may not be disjoint. Disjoint attribute sets do not

present any particular problem. Problems arise in determining

the manner in which overlapping attributes will be treated.

It bears emphasizing that inheritance is a

subclassing, not a subtyping 9
, mechanism. Inheritance

realizes different kinds of templates depending on the

constraints applied to the sharing of attributes.

9Subclassing is a set theoretical concept in which the
members (variables and methods) of the subclass include all
the members of the superclass. Subtyping is a behavioral
concept in which any object of a subtype can be substituted
for an object of the supertype and still respond to any
service requests with the desired behavior.

29

a. Logical Possibilities

It is useful to classify the various logical

possibilities for resource sharing under inheritance as either

interface sharing or implementation sharing. An 00 language

may allow either or both of these forms of sharing, refining

the individual categories through constraints

.

Interface sharing entails the reuse of a class'

interface, but not the actual implementation of the interface.

Variable names and types are shared. Additionally, method

names and parameters 10 are shared. Interface sharing can

assume the following forms 11
:

"Variable names and types are shared.

° Method names and parameters are shared.

° Variable and method names, types, and
parameters are shared.

Implementation sharing entails the sharing of

method bodies. Such sharing offers the greatest opportunities

10Parameter sharing includes the names, number, and types
of parameters as well as parameter qualifier distinctions (in
versus out)

.

nNote that signature sharing is purely a syntactic
matter. (Wegner and Zdonik, 1988) Specification sharing
provides for sharing descriptions of the effects of methods.
(Krakowiak et al, 1990) Hence, specification sharing allows
for semantic associations. "In the current state of the art,
the specification is only a comment and is not subject to any
formal processing. However, it is considered an integral part
of the type definition." (Krakowiak et al, 1990, pg. 13)

30

for code reuse. Implementation sharing can assume the

following forms

:

° Implementation code is directly shared.

° Implementation code is extended.

° Implementation code is overridden.

"Portions of implementation code are
excluded.

Logically separate from inheritance, but an

elemental consequence of the principles guiding the

construction of class hierarchies, is the capacity to include

new variables and methods in subclasses. Hence, inheritance

takes shape as a cross-product of the listed options and

extendibility . In most 00 languages, inheritance combines both

interface and implementation sharing. Virtual/deferred

attributes allow for the inheritance of interfaces alone.

The following subsections draw upon Wegner and

Zdonik' s analysis of incremental modification in the context

of inheritance. (Wegner and Zdonik, 1988) The authors assert

that every class is a type describing a template. Their

analysis is concerned with isolating the restrictions on

inheritance (template modifications) that flow from different

methods of specifying the behavior of types. The principle

concern is that subtype behavior be compatible with supertype

behavior. Different notions of compatibility emanate from the

differing specification methods. There is a strong

31

predisposition that a class hierarchy should be structured to

account for substitution possibilities (of subtypes for

supertypes) . However, Wegner and Zdonik conclude that a

strict interpretation of the subtype idea is overly narrow,

intruding upon the flexibility which the subclassing mechanism

permits. This leads inexorably to the conclusion that an 00

language ought to provide weaker forms of typing/subtyping,

thereby arming the programmer with the greatest leverage for

designing class hierarchies. A supporting reason for such

hierarchies is that objects in the real world do not often

manifest relationships as conceived by strict subtyping, but

exhibit a much richer set of similarities that class

hierarchies should emulate.

a. Behavior Compatibility

Behavioral compatibility "...may be specified by

algebras with a signature and a semantics." (Wegner and

Zdonik, 1988, pg. 62) Hence, if classes are to be modeled

such that the resulting class hierarchy doubles as a

behaviorally compatible type hierarchy, then inheritance

should be constrained to maintain a complete supertype/subtype

relationship between superclass and subclass 12
. This entails

some notion about the requirements for complete behavioral

compatibility in these relationships. Specifically, the

12The critical notion is that the semantics of behavior
must be compatible.

32

concept of substitutability must be defined for subtypes.

Wegner and Zdonik define the principle of substitutability as

follows

:

An instance of a subtype can always be used in any context
in which an instance of a supertype was expected. (Wegner
and Zdonik, 1988, pg. 65)

They then proceed to note that the only form of compatibility

in which this notion of substitutability is preserved is that

kind of inheritance in which subclasses are restricted to

adding new variables or methods 13
, and do not alter the

semantics (modify variable, argument, or result domains) of

superclass features. (Wegner and Zdonik, 1988) The sort of

compatibility envisioned is therefore both syntactic and

semantic. It is doubtful that a practical compiler could be

designed to determine complete behavioral compatibility,

especially as such compatibility cannot be specified in

current programming languages.

Clearly, complete subtype compatibility is a

highly restrictive notion and not enforced by current 00

languages. In the analysis of class relationships,

distinctions are often drawn between inheritance and type

hierarchies. (Palsberg and Schwartzbach, 1990) Though many

OOPLs identify subclassing with subtyping, it was previously

noted that the two concepts are not the same. Consequently,

13Wegner and Zdonik use the term "horizontal extension."
(Wegner and Zdonik, 1988, pg. 64).

33

it is possible to design type hierarchies which do not

parallel the class hierarchy. Based upon this distinction, it

is of interest to note that so long as data structures are

encapsulated, objects of a class (as a data type) whose

interface syntactically parallels the interface of other

classes should be substitutable for objects of these other

classes independent of inheritance relationships. This notion

of subtype compatibility appears feasible. However, languages

such as C++ and Eiffel restrict subtyping to inheritance

relationships to simplify the complexity of algorithms

performing compile time type checking, therefore improving

performance

.

jb. Signature Compatibility

Signature compatibility (syntactic compatibility

as described above) drops the requirement for behavioral

compatibility. In particular, the domains of inherited

attributes may be modified. The term "vertical modification"

describes such domain changes. (Wegner and Zdonik, 1988, pg.

64) A signature compatible subtype (vertically modified)

cannot be assigned to a supertype. A weaker form of

substitutability is therefore offered in which an instance of

a subtype can be used in read-only mode in any context a

supertype is expected. (Wegner and Zdonik, 1988) The authors

describe the relationships between entities in completely

behavioral compatibility as consistent with 'is a'

34

hierarchies. However, as LaFonde and Pugh point out, 'is a'

is not the same as subtype, but rather is a specialization

relationship. (LaLonde and Pugh, 1991) Such relationships

better coincide with signature compatibility.

c. Name Compatibility

Name compatibility "...requires only the name and

not the signature of the parent type to be preserved in the

result." (Wegner and Zdonik, 1988, pg . 66) This is a simple

and flexible form of incremental modification employed by many

00 languages (such as Smalltalk) . Name compatible

modification entails searching the inheritance path (beginning

with the result class) for the first occurrence of a name.

Some 00 languages modify the search algorithm by including

syntax which permits definitions to be directly selected from

ancestor classes (such as double dot notation in C++ or

'super' in Smalltalk).

d. Selective Inheritance

Selective inheritance 14 introduces the useful

option of deleting inherited attributes. Selective

inheritance, however, disrupts subtyping relationships should

they exist. To facilitate reasoning about classes whose

behavior is similar, but for which selective inheritance is

employed, Wegner and Zdonik introduce the term "liketype."

14Wegner and Zdonik use the term "cancellation." (Wegner
and Zdonik, 1988, pg. 67)

35

(Wegner and Zdonik, 1988, pg. 73) Liketypes logically include

the other incremental modification mechanisms. Consequently,

the authors recommend using like relationships to structure

inheritance hierarchies, applying constraints to the like

relationship as needed to achieve desired compatibility

relationships between superclasses and subclasses.

Cancellation modification mechanisms alone provide

for all the logical inheritance possibilities. It is

interesting to observe that no 00 languages that we know of

implement cancellation mechanisms directly. The difficulties

in managing intraclass linkages among attributes when

cancellation is employed probably explains the absence of such

cancellation mechanisms (as well as the adherence to some sort

of strong typing philosophy)

.

3. Specialization

Several strategies can be employed to design class

hierarchies. The possibilities include type, specialization,

and like hierarchies. Additionally, classes may exhibit no

abstract commonalties whatsoever other than code sharing or

interface sharing. In the literature, however, specialization

is typically described as the primary principle for hierarchy

design. Yet, a precise formula for building such hierarchies

has not found general acceptance. As the discussion in the

previous subsection suggests, this probably reflects a desire

on the part of designers to maintain maximum flexibility.

36

Specialization hierarchies are also called 'is a'

hierarchies (e.g., an eagle ' is_a' bird) . Booch describes

'is_a' hierarchies as consisting of "...superclasses

representing generalized abstractions, and subclasses

representing specializations in which fields and methods from

the superclass are added, modified, or even hidden." (Booch,

1991, pg. 56)

What qualifies as specialized behavior? What

correspondence should there be between the mechanisms which

implement inheritance and the abstractions which relate

classes in a specialization hierarchy? A return to

epistemological issues is evident. It appears reasonable that

a standardized notion of specialization, based upon some sort

of philosophical foundation, is required to introduce

continuity to hierarchy construction and to facilitate the

construction of compatible hierarchies (which, afterall, form

the 00 libraries central to code reusability)

.

Ultimately, the range of implementable hierarchies

entails decisions about the distribution of responsibilities

between programmers and language designers. Restrictive

languages (basically strongly typed languages) ensure that

programs are compiled in which undefined operations on objects

are caught by the compiler. As flexibility increases, the

programmer must ensure that undefined operations on objects do

not happen (i.e., explicitly indicate to the system what class

37

relationships prevail so that the compiler or run-time

environment can enforce programmer intentions)

.

4 . Multiple Inheritance

A subclass may inherit from several superclasses.

Budd agrees that ' is_a' relationships should guide the

construction of MI hierarchies (directed acyclic lattices)

,

noting, however, that the resulting subclass should be viewed

as a specialized "...combination or collection of several

different components." (Budd, 1991, pg. 173) The idea of

subclass as combination produces both the richness and

difficulties that frame discussions about MI. In particular,

what kinds of combinations should be permissible, and what

status should be accorded subclass entities? Designers have

not arrived at a consensus on these questions, which may

explain why very few 00 languages actually implement MI

.

MI also introduces new problems . Prominent problems

include name conflicts and inheritance from a common ancestor.

Name conflict resolution strategies must be developed.

Knudsen provides a useful framework for analyzing such

conflicts, distinguishing horizontal 15 from vertical 16 name

collision. (Knudsen, 1988) Such conflicts can be

15Attributes with the same name are inherited from
multiple superclasses.

"Subclass possesses attributes with the same name as
attributes in one or more superclasses.

38

characterized in three ways (Knudsen, 1988) : (1) the same

phenomena are defined; (2) casually related phenomena are

defined; and, (3) unique phenomena are defined in which no

collisions are permissible. The first method is handled by

polymorphic techniques, the second by resolution operators 17

(such as double dot notation in C++) , and the last will give

rise to compile-time errors.

Inheritance from a common ancestor involves

inheritance of attributes from superclasses whose inheritance

paths converge at a common ancestor. At issue is the

duplication of attributes. Should one or all attributes be

inherited? If all are inherited, how are they to be

distinguished? Solutions to this problem are discussed in

Chapter V.

5 . Delegation

Some 00 languages approach reusability from a

different philosophic perspective. In lieu of classes and

inheritance to facilitate sharing the implementation of

template abstractions, these languages "...directly use

objects as prototypes from which the default behavior for

concepts can be reused." (Lieberman, 1986, pg. 214) An object

can delegate its attributes to one or more prototypes. Hence,

an object receiving a message may defer to another object to

17Renaming or redefining subclass attributes is another
solution. (Budd, 1991, pg. 174)

39

formulate the response. Delegation is the mechanism for

implementing this in these 00 languages. (Lieberman, 198 6)

Proponents of delegation contend that it is more

flexible and general than inheritance. Lieberman argues that

inheritance fixes communication patterns between objects at

instance creation time whereas delegation allows any object to

serve as a prototype at any time. (Lieberman, 198 6) However,

delegation also carries the burden that objects are dependent

on one another. Stein asserts that any changes to attributes,

or their values, will affect both the object and the

prototype. (Stein, 1987) More importantly, Stein presents a

formal model which draws out the essent al implications of

classes qua templates: template instances are guaranteed to

possess the same structural properties, but value

independence. (Stein, 1987) The very flexibility of

delegation eliminates any sort of structural guarantees and

value independence for objects in an object hierarchy.

Delegation also raises epistemological questions.

Given the run-time maneuverability of an object to delegate to

other objects, it is perplexing as to what sort of knowledge

is actually being modeled. Objects in a delegation hierarchy

resemble amorphous entities amenable to the demands of the

moment, but lacking assured structural or behavioral

continuity

.

40

In 1987, a compromise of sorts to the inheritance

versus delegation 'controversy' was decided by the Treaty of

Orlando. (OOPLSA Addendum to the Proceedings, 1987)

Provisions of the treaty accepted that the object sharing

mechanism could occur along three independent dimensions: (1)

static or dynamic 18
/ (2) implicit or explicit 19

/ and, (3) per

object or per group 20
. The position adopted in the treaty was

"...that different programming situations call for different

combinations of these features." (OOPLSA Addendum to the

Proceedings, 1987, pg. 43) More than likely, the marketplace

will be the final arbiter between the two approaches.

D. COMPOSITION

Another prominent relationship among real-world entities

is composition (also called aggregation) / complex objects can

be conceived as consisting (i.e., being composed of) of

aggregates of other objects. Hence, an object is 'part_of

another object (e.g., a wheel is 'part_of a car) . Stefik and

Bobrow consider a composite object to be "...a group of

18The time that a system requires sharing patterns to be
fixed (compile or runtime) . (OOPSLA Addendum to the
Proceedings, 1988)

19Sharing patterns can be declared by programmers
(explicit) or automatically (implicit) . (OOPSLA Addendum to
the Proceedings, 1987)

20Sharing can be specified for an object at a time (per
object) or for a group of objects at a time (per group) .

(OOPSLA Addendum to the Proceedings, 1987)

41

interconnected objects that are instantiated together, a

recursive extension of the notion of object." (Stefik and

Bobrow, 1986, pg. 51) Several ideas can be drawn from this

conception of composite objects.

First, composition is another mechanism for reusability.

The class template for a group of objects may include the

previously defined templates for other classes of objects -

redefinition is not necessary. Booch notes that such

composition relationships can be implemented through two

mechanisms (Booch, 1991) : (1) declaration of class instance

variables as user defined types; and, (2) declaration of

formal parameters for class methods as user defined types (as

a parameter to the class interface)

.

Second, the interconnectedness of objects in composition

relationships occurs through the respective object interfaces.

This serves to preserve encapsulation. Nevertheless, the

interconnectedness also establishes a coupling between

respective classes. The implications of this coupling will be

examined in Chapter V.

Third, composition should not be confused with inheritance

(either single or multiple) . In particular, Halbert and

O'Brien point out that a "...subclass inherits from a

superclass only once while aggregation allows more than one

instance of a particular object type." (Halbert and O'Brien,

1987, pg. 76)

42

Fourth, the notion of composition as a recursive

definition highlights the fact that members of a composite

object may themselves also be composite objects.

Consequently, any level of nested complexity is possible.

Finally, it is interesting to ask how composite objects

differ from collections of objects cooperating collectively to

achieve a systematic pattern of behavior. The answer is that

the differences are mostly in the respective degrees of

abstraction and complexity. Composite objects can themselves

be viewed as systems (e.g., a car) . However, the level of

complexity and abstractness for systems such as a factory is

elevated enough that it should not be localized into a single

object. These application specific decisions reflect design

considerations about the distribution of knowledge, and

visibility of objects.

E. POLYMORPHISM

Polymorphism is one of the more abstruse concepts in the

00 literature. Consequently, a variety of approaches are

taken toward delimiting its meaning. That inheritance,

specialization, message passing, and polymorphism all interact

to achieve reusability and extendibility further complicates

isolating the content and effects of polymorphism.

Budd observes that definitions of polymorphism often

overlap other concepts such as overloading. (Budd, 1991) This

section reviews several polymorphic mechanisms without regard

43

to delineating the boundaries with overlapping concepts. The

intent is to establish the manner in which 00 languages

implement polymorphism.

1 . Abstract Qualities

In programming languages, "a polymorphic object is an

entity, such as a variable or function argument, that is

permitted to hold values of differing types during the course

of execution." (Budd, 1991, pg. 185) Most OOPLs provide an

efficient message passing construct that enables receivers of

messages to change. (Ingalls, 1986) Finally, Meyer states

that in strongly typed environments (such as C++, Eiffel,

etc.), the changing among types or message receivers is

constrained by inheritance. (Meyer, 1988)

What emerges is the notion that polymorphism describes

a group of mechanisms that permit programming constructs

(i.e., method names, method arguments, and objects) to shift

definitions in the course of program execution. Individual

languages must be studied to understand how the shifting is

accomplished. For example, some languages distinguish the

static, declared class of an object from the dynamic class of

its value. (Meyer, 1988) Polymorphism is managed in these

languages through manipulations of references and pointers.

Other languages manage polymorphism by binding values to

objects at run-time only.

44

2

.

Polymorphic Names

This form of polymorphism occurs when the same message

can be sent to different objects. It is commonly associated

with the overloading of function names. Hence, several

(possibly unrelated) classes may have a method with the same

name. A standard example is the method print 21
.

3 . Polymorphic Names and Arguments

Another variant of overloading occurs when methods

with the same name have different argument cardinality or

different argument types 22
. The methods are all grouped within

a single class. A standard example is the constructor

function in C++ classes.

21For example, several classes may have a method named
print which has no arguments. Individual objects from the
different classes, when receiving the print request,
understand that the local implementation of the print method
is to be used. Polymorphism, used in this manner, avoids the
undesirable construction of large case statements which match
methods to objects. Such large case statements also assume too
much knowledge on the part of one object about other objects.

22Micallef describes this as "multiple polymorphism.

"

(Micallef, 1988, pg. 32) in which there is more than one
polymorphic variable. She distinguishes this from simple
polymorphism in which the "operation invoked is dependent on
the type of only one argument, the receiver of the object."
(Micallef, 1988, pg. 32) The idea is that the same method
name may be employed by different classes (simple
polymorphism) , or by more than one method within a single
class (multiple polymorphism)

.

45

4 . Varia

The forms of polymorphism listed above represent the

basic cases found in most 00 languages. Budd additionally

includes overriding, virtual, deferred, and parametric

techniques 23 among his list of polymorphic mechanisms. (Budd,

1991)

F. CONCLUSIONS

The 00 paradigm has evolved since the introduction of the

first 00 language, CEMBALO (Meyer, 1988) , in 1968 to encompass

objects, classes, and inheritance. It is inheritance (or

delegation) which uniquely distinguishes 00 languages from

other programming languages. Languages wl ich include objects

and classes, but not inheritance/delegation are called object-

based languages (for example, Ada) . Currently, the greatest

impediment to the commercial ascendancy of the 00 paradigm as

the methodology of choice for language design is the lack of

conceptual standardization.

"Overriding occurs when a subclass redefines the body of
an ancestor method. The other techniques are discussed in the
section describing classes.

46

Ill . 00 DEVELOPMENT

A. SOFTWARE ENGINEERING METHODOLOGIES

Software engineering is the application of science and
mathematics to the problem of making computers useful to
people via software. (Berzins and Luqi, 1991, pg. 1)

Software engineering finds its genesis in the perception

during the 1960's that software production was a disorganized

process, the vagaries of which often resulted in avoidable

increases in the total cost of software over the lifetime of

a product 1
. (Schach, 1990) Computer scientists set about on

a scientific search for principles which would objectify the

process of software development. As the discipline evolved,

many of the software properties discussed in Chapter I were

established. The search for development methods which

accentuated these properties has naturally been influenced by

the underlying philosophy (or paradigm) adopted for

understanding application domains.

Currently, many computer scientists are investigating

strategies for managing a transition from non-00 based

xThe manifold problems which produced huge increases in
the total cost of software during the 1960's have collectively
been termed the "software crisis." (Schach, 1990, pg. 5)
Particular emphasis has been directed toward the excessive
costs associated with software maintenance. (Booch, 1987)

47

development methodologies to 00 based methodologies 2
. A wide

variety of opinion exists as to the preferred course to

follow. This chapter reviews software development aspects

programmers should consider in assessing the relative merits

of various strategies, considers several approaches to 00

development, and advances development recommendations.

1 . Lifecycle Organization

In object-oriented analysis, we seek to model the
world by identifying the classes and objects that form
the vocabulary of the problem domain, and in object-
oriented design, we invent the abstractions and
mechanisms that provide the behavior that this
model requires . (Booch, 1991, pg. 141)

The advent of software engineerin produced a mindset

which focused on decomposing complex ideas and processes into

simpler ones. Decomposition of the development process itself

produced models of varying constitution, but models usually

included the following stages 3
: requirements analysis,

specification, design, implementation, maintenance, and

retirement. (Schach, 1990) Structured techniques based upon

2For example, Booch 1991, Coad 1991, Li 1991, Pun 1991,
Odell 1991, and Arnold 1991 all discuss new approaches to
software development based upon the 00 paradigm. Debate
focuses on the most efficient manner in which to shift from
current methodologies based upon structured techniques
(analysis, design, and implementation guided by functional
decomposition of the application domain) to 00 techniques.
Advocacy ranges from evolutionary to revolutionary strategies.
(Li, 1991)

3These stages are collectively referred to as the
"software lifecycle." (Schach, 1990, pg. 43)

48

functional decomposition were used to further simplify each

stage in the software lifecycle.

The 00 development process is generally structured in

terms of 00A, 00D, and OOP. 00A is concerned with defining

concepts in the problem domain. It is through 00A that

knowledge about the real-world is captured4
. 00D extends the

results of 00A, uncovering entities missed by 00A, others that

meet user requirements, and still other entities that are

needed to consolidate an application into a serviceable tool

(for example, user interfaces and task managers) . OOP

involves the actual implementation of the results of 00D.

There is no rigid formula for conducting these stages; various

temporal schemes can be utilized, the net results of which are

iterative development processes best described as "...round-

trip gestalt." (Booch, 1991, pg. 188)

Debate exists over "...whether to replace structured

techniques and functional decomposition by object-oriented

techniques, or whether to look for a pragmatic solution in

which existing investments are retained to a significant

degree and tools and methods modified to encompass the object-

oriented paradigm5
. " (Henderson-Sellers and Constantine, 1991,

4Hence, as suggested in Chapter II, 00A requires subject
matter expertise.

5Henderson-Sellers and Constantine note that the
00A/00D/00P breakdown can be handled in any of several ways.
That is, though the objective of each stage is to produce 00

49

pg. 18) Consequently, strategies for 00 development entail

decisions about which techniques to apply during each

lifecycle stage. Ultimately, where an analyst falls on this

issue largely depends upon his philosophical predisposition to

adhere to purely 00 concepts and techniques, and upon the

availability of 00 development environments 6
. Currently, the

preponderance of development strategies employ modified

structured techniques 7
.

It should be pointed out that 00A/00D concepts and

techniques are serviceable tools for development leading to

implementation in non-OOPLs. The 00 approach to knowledge

representation (objects and their relationships) facilitates

problem understanding in a manner that is transferable to non-

results, the techniques adopted at a given stage may be purely
00, or they may be structured techniques modified to produce
00 usable results. (Henderson-Sellers, 1991) The critical
question is whether structured techniques can in fact be
facilely modified to accommodate 00 thinking. The answer to
this question entails both conceptual and economic
considerations: (1) can techniques based upon functional
decomposition be used to uncover fundamentally different
entities and relationships (i.e., objects, classes, and
inheritance) / and, (2) can structured techniques, if used, be
employed efficiently with a minimum of modification.

6It is one thing to argue for purely 00 techniques, quite
another to actually provide such methods and tools.

7Data flow diagrams (DFD) , entity relationship diagrams
(ER) , state transition diagrams, or event-response diagrams
are incorporated into many 00 development approaches . For
example, Booch 1991, Rumbaugh 1991, and Li 1991 all include
some of these techniques as part of their development
methodology

.

50

00 programming. Specifically, OOA/OOD can serve to structure

high-level abstractions which can then be tailored to suit the

requirements of individual programming languages.

2 . Conceptual Organization

When investigating proposed approaches, it is

important to consider the primary conceptual blocks (or

models) used to abstract a problem: does an approach directly

compose analysis in terms of objects, classes, and

hierarchies? Many structured techniques do not abstract

problem entities in this manner. In particular, structured

techniques map real-world entities to functions and data, (de

Champeaux et al, 1990, pg. 135 - 139) Heuristics must then be

applied to transition to an 00 conceptualization.

Two other difficult development problems must also be

investigated. First, 00 development requires methods for

recognizing and structuring systems. For present purposes,

systems analysis in the 00 framework is narrowly conceived of

as a process which determines groupings of objects that

accomplish some pattern (or subpattern) of collective

behavior. At issue is how analysts go about identifying and

relating these abstractions. The problem is a subtle one

since the system behavior, exercised as collections of

cooperating objects, is diffused throughout the class

hierarchies. Analysts are therefore confronted with a twofold

problem: (1) determine the functional responsibilities of a

51

system and its constituent subsystems; and, (2) determine the

best manner for distributing these behaviors among the

classes. Few proposed 00 development approaches adequately

handle this analytical problem; a problem, it should be noted,

that structured techniques manage quite well.

Second, reusability inevitably covers the entire

development spectrum. Viewed from this perspective, it is

appropriate to question how development should be conducted

given that analyses, designs, and programs can be reused as

elements in future development efforts. Specifically, 00A,

00D, and OOP no longer focus solely on the present project,

but potentially supply source material for future projects.

What concepts should guide development under these

circumstances? Are some designs more reusable than others?

Can potential reusability be measured? Clearly, reusability

requires further research.

3 . Notational Organization

Closely allied to conceptual organization is the

notational scheme adopted. Are the transitions between

development phases enhanced or impeded by notational tools?

Does the notation employed completely and consistently

describe the models being used for understanding a problem

(Arnold et al, 1991)? In particular, is a consistent

representation utilized? It has been argued that

representational shifts have stymied developers as they move

52

from analysis to design. (Coad and Yourdon, 1991) A solution

is arrived at "by applying a uniform underlying

representation for organizing data and its exclusive

processing - that of Classes and Objects within those

Classes...." (Coad and Yourdon, 1991, pg. 21) Again,

approaches vary according to the philosophic adherence to pure

00 concepts and techniques.

B. OO DEVELOPMENT APPROACHES

00 practitioners are in search of methods whose logic is

infused from the start by 00 constructs and objectives. Given

the lack of standardization in the field, it is not surprising

that there exist wide differences in 00 development

approaches. The positions advanced by some of the better-

known 00 advocates will now be reviewed.

1 . Coad/Yourdon

In apprehending the real world, men [people]
constantly employ three methods of organization, which
pervades all their thinking. (Coad and Yourdon, 1991,
pg. 1)

Coad and Yourdon proceed on the assumption that

analysis/design thinking should parallel the patterns by which

people ordinarily organize knowledge. The three methods of

organizing knowledge are (Coad and Yourdon, 1991) : (1) objects

and their attributes; (2) distinctions between objects and

component parts; and, (3) distinctions between classes of

objects. This knowledge is garnered in 00A through five

53

activities (Coad and Yourdon, 1991) : (1) finding class-&-

objects; (2) identifying structures; (3) identifying subjects;

(4) defining attributes; and (5) defining services 9
. The

activities can be pursued in any order, and generally move

from higher to lower levels of abstraction.

00D, in the Coad/Yourdon approach, takes the results

of 00A and further refines the organization of knowledge.

Additionally, specific requirements of the application are

introduced by organizing design into four components (Coad and

Yourdon, 1991) : (1) the problem component, which models the

real-world problem space; (2) the human interaction component,

which models how a human will command system and how a

system will present information; (3) the task management

component, which addresses concurrency control; and, (4) the

data management component, which provides the infrastructure

for the storage and retrieval of objects from a data

management system. 00A results form the bulk of the problem

domain component.

As analysis and design is refined, particular emphasis

should be applied to reducing connections between objects and

eClass-&-ob jects assume their usual meaning, structures
include generalization-specialization and whole-part
structures, subjects are mechanisms for guiding
analysts/experts through complex models, attributes are data
maintained about the state of an object, and services are
behaviors objects are responsible for. (Coad and Yourdon,
1991)

54

between classes. (Coad and Yourdon, 1991) Specifically, they

recommend controlling the following forms of coupling (Coad

and Yourdon, 1991) : (1) interaction coupling (limiting

parameters in messages to three or fewer, and simplifying the

number of messages sent and received by individual objects)

;

and, (2) inheritance coupling (maximizing superclass/subclass

connections along generalization-specialization lines) . The

authors also recommend that cohesion be maximized as follows:

(1) services should carry out one function; (2) classes should

contain no extra attributes or services; and, (3) inheritance

should portray specialization cohesion, not arbitrary

relationships

.

Though great emphasis is placed upon the use of a

unifying 00 notation, comparatively little advice is directed

toward actual development tools. The authors do advocate

utilizing a CASE tool for 00A, and also recommend using

summary cards for manually conducting analysis and design.

(Coad and Yourdon, 1991)

2 . Booch

Object-oriented design is not a process that starts
with a requirements specification, ends with a
blueprint for implementation, and requires a miracle
somewhere in between . We suggest that it allow an
evolutionary development , a view consistent with
Boehm' s spiral model of software development . (Booch,
1991, pg. 190)

We believe that Booch' s discussion on 00A and 00D

(Booch, 1991) is as much a diatribe on 00 philosophy as it is

55

on 00 techniques. Particular care is taken to emphasize that

the 00 approach to software development is a voyage of

discovery and invention for which there are no hard and fast

rules. Consequently, considerable effort is spent explaining

the limited applicability of structured techniques and

waterfall lifecycle development. Structured techniques tend

to reflect a bias toward algorithmic decomposition

inappropriate to real-world modeling of interacting objects,

and the waterfall lifecycle is a "...fundamentally poor

process, and generally violates many of the principles of

sound engineering practice." (Booch, 1991, pg. 189)

The foundation of the Booch approach is the isolation

and iterative refinement of problem abstractions. He directly

confesses that 00 development is a fuzzy process in which

domain expertise, experience, and intuition all play a role in

uncovering relevant abstractions at appropriate levels of

detail. In describing this evolutionary process, he

highlights four prominent activities and illustrates several

techniques, as described in the following subsections.

Development, for Booch, focuses on defining three

principal constructs: objects, classes, and mechanisms. The

following subsections review Booch' s suggested techniques and

organizing activities.

a. Techniques /Notation

56

Booch underlines the need for taking multiple

views on complex systems. (Booch, 1991) Hence, he advocates

the use of the following diagrams: class, object, module, and

process. The first two diagrams describe the logical view of

a system while the last two describe the physical structure of

a system. These diagrams capture static semantics. Dynamic

system properties are captured in state transition diagrams

and timing diagrams. Collectively, these techniques preserve

the knowledge garnered during the four organizing activities.

Class diagrams indicate class relationships 9
,

class utilities 10
, class categories 11

, superclasses, fields,

and operations. State transition diagrams show the state

space of a class - events causing state transitions. Object

diagrams "...show the existence of objects and their

relationships in the logical design of a system, and

illustrate the semantics of key mechanisms in the logical

design." (Booch, 1991, pg. 169) Hence, object diagrams are

'Class relationships include inheritance, instantiation,
using, and metaclass relationships. (Booch, 1991)

10Class utilities are free subprograms. (Booch, 1991)
That is, they are operations which are not meaningfully
encapsulated by any particular object. Instead, these
operations are grouped into utility classes from which they
are accessible, but cannot be redefined. (Booch, 1991)

lxClass categories are logical collections of classes.
Each class within a category has an associated visibility:
private to the category, externally visible, or imported from
another category. (Booch, 1991)

57

used to depict object properties, relationships, visibility,

and message synchronization. Timing diagrams indicate the

flow of control among collaborating objects. Module diagrams

show the allocation of classes and objects to modules, and

module visibility. Booch uses subsystems to group logically

related modules. Finally, process diagrams describe processor

allocation for applications with concurrent tasks.

b. Activities

Booch maintains that four activities typify 00

development (Booch, 1991) : (1) identify classes and objects at

a given level of abstraction; (2) identify the semantics of

classes and objects/ (3) identify relationships among classes

and objects; and, (4) implement classes and objects. The

first activity involves "...the discovery of key abstractions

in the problem space and the invention of important mechanisms

that provide the behavior required of objects that work

together." (Booch, 1991, pg. 191) The second activity

"...establishes the meanings of classes and objects, viewing

each class from the perspective of its interface." (Booch,

1991, pg. 192) The third activity establishes "...how things

interact within the system." (Booch, 1991, pg. 193) Finally,

the fourth activity involves "...design decisions concerning

the representation of the classes and objects we have

invented, and allocating classes and objects to modules, and

programs to processors." (Booch, 1991, pg. 195)

58

3. Wirfs-Brock

Model your design as clients and servers who
collaborate in ways specified by contracts

.

(Wirfs-Brock, Wilkerson, and Wiener, 1990, pg. 32)

The Wirfs-Brock approach to design squarely focuses on

maximizing and preserving encapsulation. (Wirfs-Brock and

Wilkerson, 1989) The client-server concept moves analysis

toward a responsibility-driven, contract perspective on entity

interactions which forces analysis and design away from

implementation/structural details and closer to behavioral

abstraction. (Wirfs-Brock and Wilkerson, 1989)

Analysis in the exploratory phase of system design

moves in the following directions (Wirfs-Brock, Wilkerson, and

Wiener, 1990) : (1) find objects; (2) determine object

responsibilities; and, (3) determine object collaborations 12
.

Heuristics and guidelines are offered to conduct the process.

It is recommended that class cards be maintained to record

information about classes, class responsibilities, and

collaborations

.

Wirfs-Brock proposes that the next phase of design

focus on structuring inheritance hierarchies using hierarchy

graphs, Venn diagrams, and contract analysis. (Wirfs-Brock,

"Collaborations entail class interactions. Such
interactions are uncovered by analyzing class communication
paths, particularly is_part_of, has_knowledge_of , and
depends_upon communication. (Wirfs-Brock, Wilkerson, and
Wiener, 1990)

59

Wilkerson, and Wiener, 1990) During this phase many-

distinctions are drawn out (Wirfs-Brock, 1990) : (1) abstract

and concrete classes are determined; (2) ' kind_of

'

hierarchies are built in which common responsibilities are

moved up the hierarchy, abstract classes are added, and

unnecessary 13 classes are eliminated; (3) contract analysis

directs the reassignment of responsibilities, and the

uncovering of new responsibilities; (4) class cohesiveness is

maximized; and, (5) the number of class contracts is

minimized. The overriding objective is that "...each class

have a single, overarching purpose; each class should serve

one main function in the system of wh: ^h it is a part."

(Wirfs-Brock, Wilkerson, and Wiener, 1990, pg. 121)

Finally, and most interestingly, collaboration graphs

and subsystem cards are employed to streamline collaborations

among classes 14
. (Wirfs-Brock, Wilkerson, and Wiener, 1990)

Again, heuristics and guidelines (emphasizing collaboration

analysis) are offered to assist in identifying subsystems.

Proposals include the following (Wirfs-Brock, Wilkerson, and

Wiener, 1990) : (1) drawing collaboration graphs; (2)

"Unnecessary classes are those which do not add
functionality. (Wirfs-Brock, Wilkerson, and Wiener, 1990)

"Collaboration graphs describes communication paths among
classes, and subsystem cards describe a subsystem's
responsibilities (contracts) and the class to which the
contract is delegated. (Wirfs-Brock, Wilkerson, and Wiener,
1990)

60

determining strongly coupled classes (including transitively

coupled classes) ; (3) simplifying and minimizing interactions;

(4) minimizing subsystem responsibilities delegated to a

class; and, (5) minimizing contracts supported by a subsystem.

The general idea is to efficiently distribute responsibilities

throughout the hierarchies on the basis of contract

considerations stimulated by subsystem analysis.

C. RECOMMENDED 00 ANALYSIS AND DESIGN METHODS

The 00 methodology for representing knowledge about real-

world objects is comparatively straightforward. However,

determining the relevant objects and their systematic

relationships is difficult. A particular sticking point is

the lack of strategic thinking on systematic organization.

This is, perhaps, unavoidable for a methodology that selects

objects and not processes as the analytic ambit.

There are no rigid formulas for conducting 00A and 00D.

As demonstrated by the various approaches discussed in the

previous section, these steps iteratively inform and improve

one another. However, certain themes can be culled which can

be applied as a 'backbone' upon which tailored modifications

can be extended. These themes can be thought of as

recommendations for organizing 00A and 00D

:

° In a concession to structured design, functionally
decompose a system into its major constituent
subsystems. This decomposition should serve as a
checklist against which the actual evolving design

61

can be assessed to ensure that principle subsystem
responsibilities are accounted for.

"Complement system analysis with a parallel analysis
of supporting application requirements - concurrency
control, interface, and database management.
Maximize reuse of previously designed application
code. When possible, allow application support
objects to perform subsystem responsibilities 15

.

° Analyze principle subsystem responsibilities.

° Identify problem domain objects/classes. Subject
experts, and prior designs should be exploited to
the maximum extent possible.

° Analyze principle object responsibilities. Note
collaborations among objects 16

.

° Analyze object variables. Decide state information
that each object needs to preserve to fulfill
responsibilities. Account for variables shared by
objects, variables that can be calculated, and
variables that can be decomposed17

. (dePaula and
Nelson, 1991)

.

° Group objects into subsystems. Note that an object
may participate in more than one subsystem.

o Check to ensure that cooperating objects account for
behavior expected from respective subsystems. Adjust
object collaborations to achieve efficient
distribution of system responsibilities: promote
tight object/class cohesion, minimize object/class

15Integrating problem domain responsibilities into
application object responsibilities is one of the more subtle
and difficult tasks faced by the analyst /designer

.

"Analysis should allow for decisions already embedded in
available libraries.

17Variable decomposition takes account of composition
relationships. (dePaula and Nelson, 1991)

62

linkages within a subsystem, and reduce the number
of message parameters where possible 18

.

"Group classes into specialization hierarchies 19
.

This presupposes a decision about the semantics
which will control the formulation of specialization
relationships

.

° Streamline class hierarchies. This includes
segregating abstract from concrete classes 20

,

factoring common methods as high as possible, and
eliminating unnecessary classes. (dePaula and
Nelson, 1991) Note that common protocol design will
include decisions about virtual and pure virtual
features

.

Tools for assisting analysis/design can be located in the

various approaches previously listed. CASE tools created

specifically for 00 purposes should be used when available.

However, when considering CASE tools, many of the issues

discussed in Section A need to be carefully assessed.

These recommendations constitute a starting point. An

analyst must first ensure that a strong foundation in 00

techniques and philosophy has been acquired - knowledge which

extends beyond mere facility with a particular pure or hybrid

18An object overburdened with subsystem responsibilities
suggests that the object/class should be decomposed into
smaller, more specialized objects/classes. This will assist in
promoting object/class cohesion.

19Note that hierarchy construction requires prior
consideration of 00L selection - single or multiple
inheritance strategies must be decided. Also, multiple
inheritance strategies must account for resolutions to
conflicts discussed in Chapter II.

"Abstract classes should formulate a common protocol.
Additionally, abstract classes should not inherit from
concrete classes. (dePaula and Nelson, 1991)

63

OOPL. This foundation will be needed to resolve many of the

00 mechanism conflicts which are addressed in Chapter V.

64

IV. FUNCTIONAL DECOMPOSITION AND
SUBCLASS RESPONSIBILITY

A. FUNCTIONAL DECOMPOSITION

Chapter III considered the applicability of structured

design techniques to 00 problems. Although the emphasis of

structured design falls squarely upon procedures and not

objects, many of the concerns which prompted structured design

in the first place (modularity, flexibility, reliability,

cohesion, coupling) receive corresponding importance in OOP.

Hence, it is not unreasonable to expect that some of the

arguments, if not techniques, of structured design applies to

OOP. This section addresses one area which merits attention:

functional decomposition.

1 . Functional Decomposition and Subclass Responsibility

It has been noted that the pure 00 methodological

framework "...does not totally neglect structured tools and

experience; rather, it defers it to a more detailed design

level." (Henderson-Sellers and Constantine, 1991, pg. 14)

Specifically, design of methods is "...essentially identical

to structured, functional decomposition as developed over the

last twenty years or so." (Henderson-Sellers and Constantine,

1991, pg. 14) Observe that "this does not contradict the

object-oriented paradigm since at this level the

65

implementation of the features is hidden and changes in the

implementation therefore have, at least in principle, no

repercussions on the rest of the software system. " (Henderson-

Sellers and Constantine, 1991, pg. 14)

Several software qualities and heuristics have been

identified as conducive to better structured designs. (Yourdon

and Constantine, 1978) In the context of structured design,

a module is identified with a single functional purpose. The

unifying purpose varies according to the organizing strategy

adopted (for example, transaction analysis or transform

analysis) . Modules are decomposed (program structures are

organized) by assessing, among other .hings, factoring 1
,

cohesion 2
, and coupling 3

. Given the identification of modules

with functional purpose, this resolves into a process of

functional decomposition.

Cohesion, coupling, and factoring are also relevant to

the design of methods. Subclass responsibility was previously

factoring is a term which describes the degree to which
control and coordination functions are performed by higher-
level modules in a hierarchy (produced by modular
decomposition) , and processing is delegated to subordinant
modules. (Yourdon and Constantine, 1978).

2Cohesion reflects a semantic or procedural unity
exhibited by statements which suggests bundling into a single
module is appropriate.

3Coupling is a measure of the degree to which separate
program elements are independent of one another. (Yourdon and
Constantine, 1978)

66

defined (Chapter II) as a situation in which ancestor class

methods rely on the knowledge that descendants must implement

certain methods. As such, a design providing for subclass

responsibility can be viewed as a subset of functional

decomposition

.

Figure 1 can be used to illustrate subclass

responsibility. Superclass A contains methods 1 and 2 while

subclasses B, C, and D contain methods 3 and 4, 5 and 6, and

3 and 7 respectively. Method 1 invokes method 3, but Class A

does not implement it. This situation therefore requires that

Class A be implemented as an abstract class, or that an

instance of Class A cannot call method 1. The invocation of

method 3 takes the form self->3. Observe that subclasses B

and D implement method 3, but that subclass C does not. Thus,

Class C, like Class A, must either be an abstract class or

instances of Class C cannot call method 1. Finally, methods

4, 6, and 7 simply indicate that other methods may be

Class A
method 1

metllod 2

1

Class B Class C

i

Class D
method 3 method 5 method 3

method 4 method 6 method 7

Figure 1: Subclass Responsibility

67

implemented by subclasses. In this example, these other

methods do not interact with method 3 or method 1. The

following subsections review problems associated with subclass

responsibility and use of cohesion, coupling, and factoring to

reduce these problems

.

a. Subclass Responsibility

Subclass responsibility does not fit easily into

the design recommendations listed in Chapter III. First, as

illustrated in Figure 1, it is questionable whether subclasses

should be allowed to exclude methods assumed to be

implemented. This may be possible for liketype systems as

described in Chapter II, but should not be attempted in

dynamically typed languages. A class may legally inherit,

but not implement a pure virtual method. In a strongly typed

language such as C++, such classes are automatically

recognized as abstract classes. Hence, run-time errors will

not occur since objects from these classes cannot be

instantiated4
. No such protective mechanisms are available in

dynamically typed languages like Smalltalk. Consequently, the

onus is shifted to the designer to ensure that all possible

avenues for arriving at such an invocation are precluded.

Second, subclass responsibility clearly

establishes an undesirable coupling between ancestor and

4 It is assumed the design recommendation that abstract
classes not inherit from concrete classes is also observed.

68

descendent classes. It requires a cooperative design effort

between respective class designers. Notice that it also

requires that descendent classes have some awareness of

ancestor class implementations (i.e., method 3 occurs in the

specific context of method 1)

.

Third, in languages such as C++, method 3 must be

declared (although not defined) in Class A. Why not supply

default behavior, perhaps an error message, to protect

designers of descendent classes? In other words, employ

virtual functions which can be overridden by descendent

classes

.

Fourth, it was asserted in Chapter III that

abstract classes should provide a common protocol and define

common behavior for descendent classes. Again, if subclass

responsible behaviors (for example, method 3) are not

applicable to all concrete descendants (for example, Class C) ,

they should not, under this formulation, be designed into the

concerned abstract class.

Finally, designers must carefully consider the

visibility of subclass responsible behaviors. Given the

linkages (discussed below) established by subclass responsible

design, it is questionable whether such behaviors should form

part of the external interface.

The preceding discussion leads to the following

recommendations when employing subclass responsible designs:

69

(1) classes such as Class A in Figure 1 should be abstract

classes; (2) every concrete descendent class should implement 5

the subclass responsible behavior; and, (3) carefully consider

whether to include abstract classes which inherit from

concrete classes implementing subclass responsible behaviors.

b. Design Heuristics for Subclass Responsibility

Should designers elect to organize behavior using

subclass responsibility, the techniques of structured design

can be used to structure solutions. The starting point is a

class with one or more methods which are excessively large 6
,

or not conceptually unified. Structured techniques can then

be applied to decompose these methods.

(1) Cohesion. "Cohesion is the measure of the

strength of functional relatedness of elements within a

module." (Page-Jones, 1988, pg. 83) Modular elements 7 are

related (or associated) by virtue of some property they have

in common. (Yourdon and Constantine, 1978) Included among

5Either directly or through inheritance from another
concrete class.

6The computer science literature is generally ambiguous
about what constitutes an overly large module since the
magnitude is influenced by notions of cohesion. However, half
a page, about 30 lines of program statements in a high level
language, has been offered as tolerable. (Page-Jones, 1988)

7 In the present context, modules refer to methods and
elements refer to statements or groups of statements in a
method.

70

these associative properties are the following: functional 8

,

sequential 9
, communicational 10

, procedural 11
, temporal 12

,

logical 13
, and coincidental 14

.

In the context of a class, a method is associated

with a single form of behavior. Hence, functional cohesion

should determine whether elements are bundled into a single

method. Although sequential and communicational cohesion have

also been supported as reasons for bundling elements into a

single module (Page-Jones, 1988), these are data-oriented

associations which are incompatible with the behavioral

underpinning to 00 methods. In passing, it should be noted

functional cohesion relates program elements that all
contribute to the accomplishment of a single problem-related
task. (Page-Jones, 1988)

Sequential cohesion involves activity such that output
from one activity serves as input to the next activity. (Page-
Jones, 1988)

"Communicational cohesion relates elements which all
share the same input, or contribute to the same output. (Page-
Jones, 1988)

"Procedural cohesion relates activities associated by
control flow. (Page-Jones, 1988)

"Temporal cohesion involves activities related in time.
(Page-Jones, 1988)

13Logical cohesion relates activities of the same general
category (for example, means of transport) , the execution of
which is determined from outside the module. (Page- Jones,
1988)

"Coincidental cohesion relates activities with no
meaningful relationship to one another. (Page-Jones, 1988)

71

that the separate behaviors which are combined by these two

forms of cohesion are not available to other methods or to

descendent classes 15
. The other forms of cohesion represent

looser associations which should not be used to build methods.

Consequently, elements that cannot be tied together through

functional cohesion should be broken out as distinct methods.

The problem remains, however, of elements within

a functionally cohesive method which represent pieces of

behavior which are conceptually the same 16
, but which require

different implementations depending upon the objects to which

they are applied. These statements, not surprisingly, can be

broken out using subclass responsibility

(2) Coupling. Implicit in the notion of cohesion

is the idea that large, uncohesive modules should be

partitioned into smaller, conceptually unified modules . (Page-

Jones, 1988) "It is vital that this partitioning should be

carried out in a way that the modules are as independent as

possible - this is the criterion of coupling...." (Page-

Jones, 1988, pg. 57) Coupling in the 00 environment has so

far been described as a linkage established between two

15These behaviors can be made available by duplicating
definitions (i.e., defining methods which implement the same
behavior)

.

16Yourdon and Constantine describe these as "processing
elements" in distinction to instructions or statements.
(Yourdon and Constantine, 1978, pg. 97)

72

classes on the basis of the knowledge possessed by one class

of the other's external and internal interfaces. Chapter

V/Section A analyzes other forms of 00 coupling, discussing

aberrant forms of coupling in which classes possess direct

knowledge of implementation details.

It was previously suggested that subclass

responsibility creates an undesirable coupling by requiring

subclass designers to understand in what contexts subclass

responsible behaviors are invoked. This is evidenced by the

fact that such behaviors have a specific role to play in

completing the behavior expected of the calling method, and

generally are not designed to fulfill independent behavioral

duties (i.e., subclass responsible methods approximate what

were termed auxiliary methods in Chapter II)

.

Structured techniques usefully define two forms of

coupling that should be avoided or minimized when designing

subclass responsible relationships. First, data coupling

should be minimized. Data coupling is a linkage achieved

through parameter passing. At issue is how many parameters

are passed, what details are revealed by the parameters, and

how the parameters are subsequently used (side effects)

.

Designers should avoid passing large numbers of parameters,

and should preserve encapsulation of structural details.

Second, control coupling entails the passing of information

intended to control the internal logic of the receiving

73

module. Control coupling requires that the calling method

have knowledge about the details of subclass responsible

behaviors. This has obvious implications for modifications

effected on subclass responsible behaviors and should be

avoided. Moreover, these complexities multiply as fan out 17

increases

.

(3) Factoring. "Factoring is the separation of a

function contained as code in one module into a new module of

its own" (Page-Jones, 1988, pg. 103) It is used to achieve

one or more of the following (Page-Jones, 1988) : reduce module

size, achieve top-down design, avoid function duplication,

separate work from management, generalize modules, simplify

implementation. Note that factoring includes more than

subclass responsibility. Hence, once a reason for pursuing

factoring has been selected (reduce module size, generalize

modules, etc.), structured techniques such as DFDs and

structure charts can be used to examine methods and determine

the merits of alternatives.

Several issues need to be clarified, however,

before factoring is attempted. First, a rationale must be

17Fan out is a magnitude describing the number of modules
subordinate to a higher level module. In the present context,
fan out describes the number of descendent classes defining
subclass responsible behavior for a particular invocation.
Note that difficulties are even greater if more than one
method in an ancestor class contains calls to subclass
responsible behaviors.

74

established. Top-down design of methods in a class is

probably not a cogent reason for decomposition. Module size,

of itself, is not a sufficient reason for breaking out

behavior (i.e., large does not necessarily mean uncohesive)

.

On the other hand, avoiding function duplication and

generalizing methods are good reasons for decomposing methods.

Second, once decomposition has been accomplished,

decisions based upon 00 considerations must be made about what

to do with the results. Again, designers return to the

requirement for formulating a methodology for allocating

knowledge among classes. Matching behavior to objects in the

problem has often been advanced in this thesis as one such

criterion (i.e., responsibility driven analysis).

Nevertheless, this rather facile solution requires substantial

amplification. Should all the behaviors broken out by

decomposition be retained in the class of the method from

which they are decomposed? Should these behaviors be

implemented as auxiliary methods? Should designers avail

themselves of opportunities (offered by some OOPLs) to include

behaviors as stand-alone functions and macros? Should non-

behavioral considerations enter into the allocation of these

behaviors in a hierarchy (for example, influencing binding

time) ? In short, structured techniques can be used to improve

poorly designed methods, but this does not automatically

translate to better designed classes and hierarchies.

75

Subclass responsibility appears to be a

specialized instance of management /work separation. The

ancestor class method decides some form of behavior needs to

be invoked, descendent class methods actually implement the

work. Management should be executed without knowledge about

who (or, more accurately, what) performs the work. Designers

can therefore employ structured techniques to isolate

management/work relationships among functionally cohesive

behaviors. Work can then be delegated to descendent classes

for implementation.

76

V. PARADIGM CONFLICTS

The 00 philosophy concentrates thought about software

development directly on those concepts which most forcefully

impact the efficiency of the process - modularization,

abstraction, information hiding, reusability, extendibility,

and maintainability. It was noted in the previous chapters

that the conduct of 00A, 00D, and OOP can vary widely

depending upon the notations, methods, and concepts used. 00

practitioners must consequently bear much of the burden for

producing software that realizes the favorable properties

comprehensively. This, in turn, implies that programmers and

designers should obtain a sound understanding of potential

language mechanism conflicts and design tradeoffs.

This chapter highlights 00 language features which can

potentially undermine the effective use of information hiding

- the principle means by which long-term maintenance costs can

be controlled. Specifically, attention is drawn to the

encroachments on information hiding produced by inheritance 1
.

Additionally, consideration is given to design criteria for

employing composition over inheritance.

*The information hiding/inheritance conflict reflects
design tradeoffs that must be made between information hiding
and reusability.

77

A. ENCAPSULATION VULNEPAJBILITIES

A certain degree of economy enters into the design of 00

software. Abstraction, information hiding, and reusability-

can be viewed as interdependent variables whose values

designers collectively attempt to optimize. What constitutes

a collective optimum, of course, is reserved to particular

design philosophies. Nevertheless, there is a predisposition

to consider information hiding as central in any solution to

many software lifecycle problems 2
.

Abstraction abets thinking that emphasizes essential

properties over mundane details. From the outset, abstraction

directs attention away from implementati n details. Hence,

abstraction supports information hiding in the sense that the

abstract conceptual approach promotes design organization

which distinguishes property from detail. 00 designs and

programs exercise their abstract qualities through the

respective class interfaces. Consequently, designers must

understand OOPL mechanisms and vulnerabilities that circumvent

or undermine the strict enforcement of communication

controlled by interface.

Inheritance increases code reuse. To the degree that

inheritance mechanisms depart from interface enforcement,

Software engineering evolved during the late 1970' s and
early 1980' s in large part due to the explosion of software
maintenance costs over the product life-cycle. (Booch, 1987)

78

reuse is achieved at a cost: the internal details of classes

are exposed. Even in situations of strict interface

enforcement, inheritance creates linkages among related

classes that require careful attention when modifications are

effected. These reservations with respect to inheritance are

particularly prominent for complex applications involving

highly developed class hierarchies.

1 . External Interface

The external interface consists of those object

features available to object users (see Chapter III on

external clients) . Poorly designed or inadequately enforced

external interfaces can lead to a reduction in information

hiding.

a. Representation Access

The primary purpose of encapsulation is to hide

the structural details of objects. Limiting access to object

variables to accessor methods allows designers a finer degree

of control: (1) no access, read only access, or read/write

access/update methods can be implemented/ (2) users need not

have any knowledge of variable types; (3) polymorphism can be

exploited to construct conversion methods for handling

variables 3
; and, (4) variables can be renamed, removed, or

3An example would be an object which tracks location.
The actual variables may be placed in a Cartesian grid. A
polymorphic accessor method can be designed which uses either
Cartesian or polar coordinants to set the value of the

79

reinterpreted4 without necessitating a recompilation of user

code. (Snyder, 1986)

OOPLs or designers may fail to insulate object

variables from direct access/update in several ways. First,

a language may not offer mechanisms to render the structural

details private (i.e., they do not encapsulate). Second,

though a language may provide an interface to access/update

variables, it may not restrict the user to this interface.

OOPLs may allow direct access/update by variable name (such as

Simula) , or may allow direct access/update through dot

notation (such as C+ +) . Third, designers may write methods

which contain embedded direct references to variables. In

this case, users maintain an indirect capability for

representation access. This leads to the curious, if not

obvious, idea that objects must be protected from themselves!

Jb . Creation and Initialization

Some OOPLs provide shortcuts for object creation

and initialization which expose implementation details.

(Micallef, 1988) Simula, which employs formal parameters,

provides initialization by actual specification of values for

location variables.

4Variable modification/elimination, however, may require
reviewing the implementation of the accessor methods to ensure
that contracted behavior is maintained. This class method
inspection necessity expands if other methods in the class can
access variables directly (by name rather than through an
accessor method)

.

80

the formal parameters; consequently, the "number, type and

semantics of formal parameters are a part of the object's

external interface." (Micallef, 1988, pg. 18) Flavors allows

initialization methods which directly use variable names as

keywords. (Micallef, 1988) The preferred course to pursue in

these instances is to separate object creation from object

initialization such that variable access is limited to the

body of initialization methods. (Micallef, 1988) Again,

maximum information hiding is achieved when initialization

methods must use accessor methods to assign values.

c. Auxiliary Methods

As noted in Chapter Il/Section B, auxiliary

methods are supporting operations, knowledge of which end

users do not need. These methods should therefore not be part

of the external interface. An OOPL should provide a mechanism

to render these methods private to respective instantiations

of the object.

2 . Internal Interface

The internal interface consists of those ancestor

features available to descendent classes by virtue of

inheritance mechanisms. Some languages offer the capability

of designating class features as private to instantiating

81

clients, but visible to inheriting clients 5
. (Micallef, 1988)

As with poorly designed/enforced interfaces to instantiating

clients, similarly weak interfaces to inheriting clients can

expose implementation details. This subsection considers

interface vulnerabilities. Subsequent sections discuss other

facets of inheritance which pose problems for information

hiding.

a. Representation Access

Access to superclass structural details should be

limited to accessor/update methods for the same reasons as

those outlined in the previous section. Consequently,

descendent classes should not be able to directly

access/update superclass variables by name or dot notation.

This implies that superclass designers must cooperate by

including the appropriate access/update methods. (Snyder,

1986)

Jb . Embedded Direct Access

Methods which can potentially be inherited should

utilize access/update methods for references to variables

embedded in the methods; again, this results in reduced

linkages thereby minimizing the effects of variable

modification/elimination. Hence, embedded direct access/

5Specifically, superclass features declared public or
protected are visible to descendent classes. See Chapter
II/Section C for more on inheritance.

82

update is dangerous to both superclasses and descendent

classes

.

c. r Self r /' This' Invocation

Some OOPLs offer devices by which an object can

directly invoke methods on itself. Smalltalk employs the word

'self, "...a special variable representing the object which

is the receiver of a message." (Smalltalk/V286 Tutorial

Programming Handbook, 1988, pg.70) Similarly, C++ uses the

word 'this', "a pointer to the object for which a member

function is invoked...." (Stroustrup, 1987, pg . 137) Problems

arise, however, if operations invoked through this device are

redefined by a class or any of its descendants. (Snyder, 1986)

An inherited method using 'this' (or 'self') may therefore

invoke descendent class methods instead of the intended

superclass method.

Several options can address the problem: (1)

designers of descendent classes can be aware of inherited

method implementations - an undesirable violation of

information hiding; (2) superclass designers can limit use of

'self or 'this' to refer to private methods; and, (3) some

other language mechanism can be developed which allows an

operation invocation to specify the appropriate superclass.

Smalltalk provides a partial solution, allowing the word

'super' to denote operation invocation on a subclass'

83

superclass 6
- Smalltalk/V286 Tutorial Programming Handbook,

1988) C++ uses a scope resolution operator, '::' 7
, to

specifically designate the source class for method

implementation. Use of these devices ('self, 'this', or

'super') unavoidably exposes inheriting classes to

modification linkages. Designers should therefore carefully

consider whether the convenience of these devices merits

potential information hiding lesions.

3 . Name Conflicts

Some analysts maintain that name conflicts ". . .are the

root of the inheritance/encapsulation problem as it exists in

most OOP languages." (Nelson, Moshell, aj i Orooji, 1991, pg.

220) Complications occur when descendent classes override

ancestor variables. The risk is that overriding may happen

6This solution appears to push the problem upward one
level in the class hierarchy. Suppose a subclass A invokes a
superclass B method using 'super' . Superclass B itself employs
a 'super' invocation to its superclass C. However, the 'super'
call in B to C is to a method which has been redefined in
superclass B. The designer of subclass A has no way of knowing
(barring examination of implementation code) whether the
method he would intend to be invoked is in fact the one
selected. This problem arises from the fact that methods using
'super' can be inherited while 'super' only refers to a
subclass' immediate superclass. This solution also fails when
multiple inheritance is used. (Snyder, 1986)

7A superclass X implementation of method Y could
therefore be invoked by descendent class Z using the syntax
X::Y. Direct naming, of course, links inheriting classes to
the named class, exposing inheriting classes to modifications
effected on the named class. (Stefik, 1986)

84

unintentionally - designers may be unaware of ancestor naming

conventions because inherited variable names are hidden.

Method name conflicts also present potential problems. It

appears, therefore, that subclass designers must possess

knowledge about the internal details of ancestor classes.

This section reviews name conflicts as they apply to single

inheritance hierarchies. Multiple inheritance name conflicts

are discussed in Subsection 5 of this section.

a. Variable Name Conflicts

As a class hierarchy expands, variable name

conflicts can become more involved. In most conventional

OOPLs, new variables with the same name as inherited variables

are assumed to redefine variables which would otherwise have

been inherited. (Nelson, Moshell, and Orooji, 1991) Designers

consequently need to be able to distinguish viable

redefinitions (overriding) from new variables . Hence, "...the

designer of a class must know all that there is to know about

the variables inherited from the superclass." (Nelson,

Moshell, and Orooji, 1991, pg. 220) Note that this problem

also applies to inherited methods with embedded references to

variables which have subsequently been redefined.

Jb. Method Name Conflicts

Method name conflicts foster ambiguities similar

to those associated with variable name conflicts. Overriding

may unintentionally occur if subclasses define methods using

85

the same names as those of methods private to the parent

class. A subtle permutation of this problem is that there may

be no way to control methods used by inherited methods.

(Nelson, Moshell, Orooji, 1991) An inherited method may

contain an embedded invocation to a method which has been

redefined. Which implementation is subsequently used is

language dependent 8
. (Nelson, Moshell, and Orooji, 1991)

c. Name Conflict Remedies

Several strategies can be employed to alleviate

or eliminate unintended name conflicts. First, the OOPL

environment may include a class hierarchy browser which

permits investigation of inherited variable and method names 9
.

8Nelson, Moshell, and Orooji (1991) raise another
interesting (and amusing) issue: every variable and method in
an ancestor class may be overriden by the time a distant
descendent class inherits. Consequently, a class can be an
ancestor and yet not supply one inherited feature to the
descendent class. Though the resolution of this is a matter of
design philosophy, it raises questions as to the nature of the
specialization which is being designed into the hierarchy.

9This can be considered a violation of information
hiding. In particular, it may be the case that descendent
classes are designed by teams whose only intercommunication
consists of knowledge about the external and internal
interfaces. Nevertheless, hierarchy browsers are a common
tool which facilitate a potentially simple solution to name
conflicts. Information hiding should not be carried to such
extremes that development is hindered more than assisted. This
thought leads to another, larger issue. Though information
hiding, abstraction, and modularization serve to promote
reusability, the idea that reuse should be attempted without
regard to inherited implementation details ought to be
approached with some incredulity. An obvious example concerns
code whose failure or aberrant behavior can produce life or
system threatening results.

86

Designers are then free to make informed decisions about

overriding. Second, multiple copies of inherited variables

with the same name can be maintained, each accessible only by

methods inherited through the internal interface 10
. (Nelson,

Moshell, and Orooji, 1991) Inherited methods avert name

conflicts by continuing to function under the interface

environment that existed in the respective superclass. Third,

the logic of inheritance can be restricted to extension only.

Language facilities can be structured which catch and disallow

name conflicts. This solution, though feasible, would overly

constrict the inheritance process. Moreover, it would

disallow overriding, a mechanism that is sometimes central to

specialization guiding the hierarchy construction.

4 . Hierarchy/Lattice Modification Problems

Chapter II/Section C reviewed several strategies for

shaping class hierarchies. Modifications to a class hierarchy

potentially rupture the underlying hierarchy logic,

invalidating the contracts which exist between superclass and

subclasses. Information hiding cannot completely insulate

10Note that the authors have defined the internal
interface to consist "...of those methods defined locally for
the class and all of the methods in the external interface of
each superclass (but not each ancestor) of the class."
(Nelson, Moshell, and Orooji, 1991, pg. 223) Name conflicts
are avoided by attaching the superclass name to inherited
methods. The authors use the term "enheritance" to describe
this form of encapsulated inheritance. (Nelson, Moshell, and
Orooji, 1991, pg. 223)

87

classes related through inheritance from the adverse impacts

produced by these modifications. Consequently, 00 programmers

need to understand these linkages before attempting to modify

class hierarchies. This caveat applies especially during the

maintenance phase of the software life cycle 11
.

a. Inheritance Visibility

Inheritance visibility refers to "...whether or

not the use of inheritance itself should be part of the

internal interface (of the class or the objects) . In other

words, should clients of a class (necessarily) be able to tell

whether or not a class is defined using inheritance?" (Snyder,

1986, pp. 40-41) At issue is whether inheritance should

remain strictly a mechanism for code reuse, or whether it

should enforce particular inheritance strategies (e.g.,

specialization and/or subtyping) . Snyder (1986) and Micallef

(1988) contend that inheritance visibility undermines

information hiding and reduces programming flexibility.

(1) Excluding operations. "Most object-oriented

languages promote inheritance as a technique for

specialization and do not permit a class to 'exclude' an

nAn approach to this problem from a different perspective
argues that program-based testing of proven code needs to be
reexamined when class hierarchies are modified. (Perry and
Kaiser, 1990) Though the discussion is technical, the authors
note various linkages produced by inheritance that require
retesting of code in both modified and inheriting classes when
code is modified.

88

inherited operation from its own internal interface." (Snyder,

1986, pg. 41) The idea expressed is that specialization

requires that ancestor features be inherited. Hence, a chain

of transitive relationships is set up in a hierarchy. A

modification such as redefining the superclasses for an

ancestor class severely impacts descendent classes built on

the expectation of inherited features from the now absent

superclasses. Hence, superclass modifications must account

for inheritance relationships by maintaining a stable

interface

.

(2) Subtyping. It was noted in Chapter

Il/Section C that some OOPLs identify subtyping with

inheritance to facilitate static type-checking. "If subtyping

rules are based on inheritance, then reimplementing a class

such that its position in the inheritance graph is changed can

make clients of that class type-incorrect, even if the

external interface of the class remains the same." (Micallef,

1988, pg. 25) For example, suppose that class Y is a subclass

of class X, and that class Y is redefined to be a subclass of

class Z (and not of class X) . Objects of class X can no

longer be substituted for objects of class Y. Consequently,

reusability is reduced and source code may need to be

rewritten.

(3) Remedies. Inheritance troubles traceable to

subtyping mechanisms (in which types are identified with

89

classes) cannot be ameliorated12 - removing ancestor classes

will always invalidate existing substitutions based upon type

relationships (barring coercion) . Clearly, such modifications

should occur during the initial design (or rapid prototyping)

phase of development, and not during the maintenance phase of

mature software products 13
.

Two methods are available for reducing inheritance

linkages. First, modifications should preserve a stable

interface. This leads to the notion that once a class moves

into its 'post-production phases', its interface should be

closed (except for extensions) 14
. Second, inheritance

visibility should be limited to a . abclass' immediate

superclasses, and inherited methods should only invoke other

inherited methods 15
. (Nelson, Moshell, and Orooji, 1991) The

12 It has been noted that subtyping problems could be
handled by separating the type hierarchy from the inheritance
hierarchy. (Micallef, 1988) Furthermore, "...a formal
semantic specification of behavior is needed to be able to
correctly do behavioral subtyping." (Micallef, 1988, pg. 27)
That is, some standard needs to be agreed upon to relieve
programmers of the burden for selecting subtyping rules,
thereby automating subtyping decisions.

13Note that elimination of any ancestor class from which
features are inherited poses the same problem - regardless of
the logic guiding hierarchy construction.

14 It is possible to 'eliminate' methods by coding null
implementations. This is a dangerous practice, however, that
can produce deleterious results.

15Basically, this solution amounts to renaming the
offending methods.

90

latter technique prevents subclass methods from 'reaching up'

a hierarchy to ancestor variables or methods which have been

overridden by superclasses. In this manner, inheriting

classes are concerned only with inherited behavior, and not

with inherited implementations. (Nelson, Moshell, and Orooji,

1991)

5 . Multiple Inheritance

All of the inheritance problems considered above also

apply to multiple inheritance. In distinction to single

inheritance, however, solutions are far more complex

individual OOPLs can create inheritance graphs that are

unknown and undesired. As an example, CLOS (Keene, 1989)

employs specificity rules for determining which specifiers for

individual slots will be inherited. Consequently, the

definition of a slot may represent an amalgam of specifiers

inherited from different classes. Designers have to

investigate every superclass to determine the actual form of

inheritance. This example returns to the larger problem

addressed in Chapter 2/Section C: what precedence rules does

an OOPL apply for determining what is inherited and for

resolving name conflicts? "The way this conflict is resolved

in some languages produces different results if the

inheritance graph is changed, even though the external

interfaces of the objects remain the same." (Micallef, 1988,

pg. 26)

91

For languages which permit MI, precedence rules

determine the shape of inheritance and resolve name conflicts.

Generally, such rules either flatten MI graphs into linear

chains by introducing a total ordering among the classes and

then applying rules for single inheritance 16
, or directly

locate in the MI graph inheritable variables and methods 17
.

(Stefik and Bobrow, 1986)

Linear solutions will produce results which depend

upon the decision criteria adopted for arriving at a total

ordering. A risk is that these criteria result in chains

which do not reflect designer intentions 18
. (Stefik and Bobrow,

1986) Hence, name conflict resolution (and inheritance in

general) may not follow designer intentions. This compels the

designer to investigate the implementations of actually

inherited features to ensure consistency of purpose.

Graph-oriented solutions require the development of

graph traversal strategies to implement inheritance.

Additional rules must be developed to handle name conflicts

16Such strategies are titled "linear solutions." (Stefik
and Bobrow, 1986, pg. 43) The authors note that Flavors and
CommonLoops use this strategy.

17Such strategies are titled "graph-oriented solutions."
(Stefik and Bobrow, 1986, pg. 42) The authors note that
Trellis/Owl and extended Smalltalk use this strategy.

18For example, a chain may be established in which an
immediate superclass is separated from a subclass by other
classes which redefine methods in the superclass.

92

and inheritance from a common ancestor (non-tree graphs)

.

Name conflict resolution possibilities include the following:

(1) do not allow name conflicts; (2) force the subclass to

implement variables/methods which override any name conflicts;

and, (3) allow inheritance of all conflicting methods 19
. Non-

tree inheritance can be handled by limiting inheritance to one

set of inherited variables/methods from common ancestors, or

multiple sets (depending on the number of paths from an

ancestor to descendent class) . The problem with graph-

oriented solutions is that inheritance is exposed to

modifications in the class hierarchy (i.e., inheritance

visibility) . Furthermore, designers must understand how

potential ancestors implement methods (where name conflicts

exist) to decide upon which inheritance strategy to pursue.

The solutions to MI problems are the same as those

advanced in the previous section: a stable interface and

inheritance limited to immediate superclasses. Common

ancestor problems are probably best handled by matching the

number of instance variable sets to inheritance paths 20
. Name

19Such strategies require some rules for deciding how the
inherited methods will be invoked. Possibilities include
language determined orderings, and designer determined
orderings

.

20This eliminates a situation in which multiply inherited
methods from a common ancestor repeatedly update a single set
of instance variables also inherited from the same ancestor.
(Stefik and Bobrow, 1986)

93

conflicts can be handled as before - tagging each such method

with its superclass name and restricting its visibility to the

interface of its class.

6 . Design Recommendations

Designers should endeavor to understand the

complications introduced by inheritance and minimize its

detrimental aspects early in the design phase. Aside from

general problems attributable to inheritance, problems

specific to individual 00 languages should also be thoroughly

understood. We now offer the following design recommendations

for guiding inheritance decisions:

General Hierarchy Prescriptions -

"Avoid constructing hierarchies which include
multiple paths to common ancestors.

°When utilizing multiple inheritance, minimize the
number of immediate superclasses.

°If the OOPL being used allows user defined
precedence ordering21 for MI, avoid modifying
superclass orderings unless absolutely necessary.

"Reduce the effects of modifications by limiting
the depth of hierarchy graphs to three or four
levels

.

"Always restrict variable access/update to methods
in the appropriate interface.

21Many OOPLs (such as Smalltalk) determine a precedence
order based upon the textual order in which superclasses are
listed in the definition of a subclass. Note that this exposes
such subclasses to potentially unintended side-effects should
the list be reordered.

94

°Minimize the number of methods in both the
external and internal interfaces.

^Exploit public, protected, and private
mechanisms, if available in the OOPL being used.
If not available, attempt to directly design and
enforce these facilities into the class
hierarchy

.

°Minimize the use of self-referential devices such
as ' self , and 'this' .

°Minimize/avoid use of devices which allow direct
invocations of variables/methods which are not
part of the internal interface (e.g., dot
notation)

.

o Thoroughly understand ancestor class visibility
in the OOPL being used. If prominent, carefully
consider the consequences of changes to the graph
structure

.

"Maintain stable class interfaces.

° Minimize the number of embedded method
invocations

.

Name Conflicts -

°When possible, employ configuration management
techniques which limit naming conflicts. If
available, exploit class browsers to uncover name
conflicts

.

° Carefully investigate the resolution mechanisms
employed by the OOPL being used. Design classes
and modifications with these mechanisms in mind.
For many languages, this unavoidably requires
implementation visibility of the interface.

°If possible, inherit all variables for which
name conflicts exist, using some syntactical
device such as tagging with the superclass
name to differentiate such variables. Limit
interactions with these variables to methods
inherited from the corresponding superclass.

95

°Ultimately, OOPLs will have to be designed
which can search inheritance graphs for name
conflicts, and make decisions based upon
semantic properties of the affected methods and
inheriting subclasses.

B. COMPOSITION AND INHERITANCE

A fundamental task of 00D is to determine the behavior and

structure of objects (as abstracted into a class) . Often,

designers must consider whether structures and behaviors

should be inherited or realized through composition 22
. This

task inevitably requires investigating the nature of the

relationships which exist between objects. At first glance,

the decision appears to be a simple distinction between ' kind-

of and 'part-of relationships. However in many situations

the complexity of object relationships vitiates quick

determination of appropriate relationships, and therefore

complicates inheritance/composition choices.

The real difficulty in dealing with composite objects is

that the 00 design process focuses on classes and class

hierarchies in a manner which emphasizes the independence of

the abstractions being described. This conceptual approach

does not directly lend itself to the analysis of composition

relationships which can exist between objects of classes in

different hierarchies. Designers must therefore carefully

detail the entire nexus of object interconnections that

formulate a composite object. A critical matter in this

22Recall that inheritance reflects relationships between
classes while composition reflects relationships between
objects

.

96

regard is determining whether an object's behavior is modified

when it forms 'part-of a higher level object (i.e., has a

role to play in some form of collective behavior) . Designers

must address where these constraints are to be effected, and

what policy to pursue if an object has more than one role to

play (i.e., is 'part-of more than one object).

This section reviews composition, advances criteria for

recognizing composition relationships, draws out the

implications of using composition versus inheritance,

illustrates inheritance/composition tradeoffs by presenting

solutions to a simple design problem using three different

OOPLs, and considers to what degree composite objects should

parallel the details of real-world objects.

1 . Composition Reviewed

Chapter Il/Section D introduced the idea of

composition, noting several properties of composition

relationships. The concept is further analyzed in this

subsection; particular attention is directed to subtleties

which complicate the design of composite objects.

Composition "...is a tightly coupled form of

association23 with some extra semantics." (Rumbaugh, 1991, pg.

37) Rumbaugh (1991) discusses several properties of

composition which distinguish it as a specialized form of

"Association is an abstraction used to group objects from
several independent classes. (Elmasri and Navathe, 1989)

97

association: (1) the relationship is transitive 24
; (2) the

relationship is antisymmetric25
; and, (3) properties (state

values and operations) of the whole can propagate to the

part 26
.

That properties propagate raises several interesting

issues. First, the form of interconnectedness induced by

composition requires analyzing the existential dependency of

contained objects. Specifically, should an object which is

part of another object manifest a separate identity? This has

implications for creation and destruction operations. It also

portends the possibility of conflicting interobject

interactions. Technically, the problem can be viewed as one

in which the variables which make up an object are themselves

objects 27
, or are pointers to objects 28

. (Nelson, 1990) Not

surprisingly, pointer referencing also allows contained

objects to be shared by more than one containing object.

Second, subobjects and dependent objects most likely will have

24For example, A is part of B, and B is part of C implies
that A is part of C.

25A is part of B implies that B is not part of A.

26An example would be that the speed of an aircraft
propagates to the parts which compose the aircraft - the
wheels, engines, wings, etc.

"Nelson terms these "dependent objects." (Nelson, 1990,
pg. 5) Dependent objects do not exist apart from the objects
they are a part of.

28Nelson terms these "subobjects." (Nelson, 1990, pg.
5) Subobjects do exist apart from the objects they are part
of.

98

some properties in common with the object of which they are a

part 29
. This follows naturally from the idea of property

propagation. However, as suggested above, subobjects may be

'part-of more than one object - creating a requirement to

insulate subobjects against potentially conflicting state

changes. Third, transitivity implies that these

considerations flow through to all objects at whatever level

in a composition hierarchy30
. Complex determinations must be

made as to what level properties propagate to. Finally,

antisymmetry implies that properties do not necessarily

propagate to higher levels in a composition hierarchy.

Another facet of composition requiring attention is

the cardinality relationship between containing objects and

sub/dependent objects. Possibilities include the following:

Aggregation can be fixed, variable, or recursive . A fixed
aggregate has a fixed structure; the number and types of
subparts are predefined31

. A variable aggregate has a finite
number of levels, but the number of parts may vary32

. A

29This possibility reflects a design consideration
should propagated properties be maintained by contained
objects, or can these properties be assumed to be maintained
by the containing object? Solutions to this question may be
influenced by whether or not contained objects exist
independent of the containing object.

30A composition hierarchy can be conceived of as a tree
depicting composition relationships. Such a hierarchy starts
with the highest level object, and moves downward to
successively more granular levels of detail.

31For example, a golf club always has one clubhead, one
shaft, and one grip.

32For example, an academic course may consist of a single
professor and several students. However, there may be a

variable number of students per course (i.e., a one-to-many

99

recursive aggregate contains, directly or indirectly, an
instance of the same kind of aggregate; the number of
potential levels is unlimited33

. (Rumbaugh, 1991, pg. 59)

Fixed aggregates are the easiest to understand and design.

Variable aggregates, however, pose interesting problems for

reusability. How does one design a class for composite

objects such that objects can be instantiated with variable

numbers of parts? Must each variation be modeled by a

distinct class (using inheritance) ? This problem will be

investigated in Subsection 4.

Finally, a distinction is sometimes drawn between objects

that are composed of other objects (a car) and objects that

contain other objects (an array of integers) . (Wirfs-Brock,

Wilkerson, and Wiener, 1990) Though both relationships can be

modeled as composition, containment is a much looser form of

association. It is often the case that a container does not

need to interact with the elements it holds. In other cases,

interactions do occur 34
. Frequently, containment relationships

involve a design choice between employing composite objects or

instantiations of parameterized classes (see Chapter

relationship prevails)

.

33For example, a computer program may consist of blocks
containing compound statements which, in turn, contain other
blocks. (Rumbaugh, 1991) Recursive composition should be
avoided in most cases as there is the potential for an
infinite recursion in which an object calls upon itself to
formulate its definition.

34For example, a hash table may need to ask an element for
its hash code before adding the element to the table. (Wirfs-
Brock, Wilkerson, and Wiener, 1990)

100

II/Section B) . Containers that do not interact with their

parts are probably best modeled using parameterized classes.

This clearly identifies the limited behavioral connections

between the container and the objects it holds.

2 . Recognizing Composition

Several keys to composition have already been

discussed: (1) 'part-of relationships; (2) propagation of

properties/operations; (3) cardinality considerations; and,

(4) interobject behavioral constraints 35
. Other facts of a

problem situation may also suggest that composition fits a

particular object to object relationship. These include the

following: (1) collective instantiation and destruction; (2)

delegation of responsibilities from the whole to parts;

(Wirfs-Brock, Wilkerson, and Wiener, 1990) and, (3) service

unity 36
.

3. Composition or Inheritance?

Though individual facts may indicate that composition

is the appropriate design choice, the possibility always

exists for modeling such relationships using inheritance 37
. In

"Composite objects "...describe for instantiation a
richly connected set of objects. ..." (Stefik and Bobrow, 1986,
pg. 58)

36This rather vague notion marks the fact that parts do
not act independently, but rather are controlled by the
unifying purpose of the whole object. This would serve to
distinguish, for instance, a clock and a radio which happen to
be collocated, from a clock-radio.

37 In particular, multiple inheritance can be used as an
alternative to composition.

101

many situations, it is not clear whether composition or

inheritance should be used (the design problem considered in

the following subsection is an example) . Hence, it is worth

considering in what respects the consequences of selecting one

over the other differ.

Inheritance is a class relationship, whereas

composition is an instance association; differences in the

nature and mechanics of the two relationships start from this

fundamental distinction 38
. First, the hierarchical structure

which serves to define a class through inheritance establishes

the identity of a single object. Composition, on the other

hand, involves a relationship between ok jects with separate

identities 39
.

Second, composition strictly limits visibility on the

part of the containing object to the external interfaces of

its parts. Inheritance allows a finer degree of visibility

which generally entails greater accessibility through the

internal interface.

Third, inherited behavior is visible to other objects

to the extent that it is included in the external interface.

The behavior of objects serving as parts, on the other hand,

is not visible to other objects - the containing object

38Composition can be thought of as a form of part
inheritance while inheritance can be viewed as behavioral
inheritance. (Nelson, 1990)

39This holds regardless of whether the part is a dependent
object or a subobject.

102

mediates any such interactions 40
.

Fourth, "behavior can be easier to reuse as a

component than by inheriting it." (Johnson and Foote, 1991,

pg. 124) As an example, it is easier to add an extra

scrollbar to a window as a component, than it is to multiply

inherit scrollbars. (Johnson and Foote, 1991) The idea is

that inheritance used in this manner may require undesirable

changes to the behavior established by ancestor classes.

Fifth, as noted in the previous section, inheritance

potentially exposes information hiding to compromise.

Composition does increase the coupling between objects;

nevertheless, information hiding is not violated since all

interactions are managed through the respective external

interfaces

.

Finally, specialization was previously identified as

the principle strategy for structuring class hierarchies (see

Chapter Il/Section C) . Hence, an appropriate question to ask

when contemplating inheritance/composition choices is whether

or not a resulting subclass can be said to be a specialization

of the class (es) from which it inherits. For example, "it is

not valid to define a class Car that inherits from Body,

Frame, Wheels, and similar classes, since a car is not a

wheel." (Nierstrasz, 1989, pg. 8) A different perspective on

specialization is to consider the substitution possibilities

40This distinction is reduced to the extent that an OOPL
permits manipulations by pointer operations.

103

discussed in Chapter II. Inheritance should not be used if

substituting a subclass object for a superclass object does

not satisfy applicable compatibility requirements (for

example, a car cannot be substituted for a wheel in any

meaningful way)

.

4 . The Clock_Radio Problem

It is instructive to underline the ramifications of

selecting composition or inheritance by investigating the

solution to a sample design problem. This section considers

designs for a clock_radio in three different OOPLs : C++,

Smalltalk, and CLOS . Separate solutions for each OOPL, one

using inheritance and the other using composition, are

illustrated and compared.

Although a major theme of this thesis is the advocacy

of OOA/OOD practices which enhance the entire OOP process,

independent of any particular OOPL, it must be conceded that

at this point in the evolution of OOPLs language selection

does impact design opportunities. Hence, the three OOPLs are

also used to illustrate language dependent differences between

composition and inheritance.

a. Problem Statement

The clock_radio is a common household device which

consists of a clock and a radio. It manifests many of the

properties listed above for recognizing composition: (1) the

clock and the radio are parts of a clock radio; (2) properties

such as location and power propagate from the whole to the

104

parts/ (3) a clock-radio could conceivably contain more than

one clock, or more than one radio; and, (4) behavioral

constraints not ordinarily associated with separate clocks and

radios are possible (for example, a clock controlled timer can

turn the radio off) . Figure 2 displays the responsibilities

that rudimentary 00A might reveal as germane to a

clock radio. State information represents knowledge that a

clock_radio maintains about itself. Services define the

behavior of a clock_radio. The list is obviously not

complete, but for present purposes can be accepted as a

standard upon which permutations may be structured. Note that

Figure 2 is not a class definition in any OOPL, but rather a

listing of behaviors and state information. Hence,

distinctions such as instance and class variables are not

required.

State information
present location radio alarm time
power on clock alarm time

Services
set time volume increase
set clock alarm volume decrease
set radio alarm select channel
play am radio on
play fm

Figure 2: Clock_Radio Responsibilities

In the subsections which follow analysis will

focus on three classes: electric__clock, radio, and

clock_radio. To simplify discussion, the electric_clock and

105

radio classes are not placed into hierarchies (i.e., a

detailed design in which suitable variables and methods are

elevated to abstract classes is not performed) . Figure 3

illustrates the inheritance class relationships, and Figure 4

shows the composition object relationships which will be

modeled.

Figure 3: Inheritance Class Relationships

Object clock_radio

object electric_clock
object radio

Figure 4: Composition Object Relationships

The implementations contained in Appendices A, B,

and C are not intended to demonstrate a comprehensive, usable

solution. In particular, error handling is not provided. For

the dynamically typed languages (Smalltalk and CLOS) , no

effort was made to enforce type checking. Casual observation

will also reveal that instance variables are directly accessed

in most of the implementations. This was done to reduce and

simplify the code.

106

t>. C++ Solution

C+ + is a hybrid OOPL, erected on the foundation of

the C programming language. The principal building blocks

include objects, message passing, classes, and inheritance

hierarchies. C++ is a strongly typed language in which

classes implement abstract data types. The language does

provide for virtual classes and for public, protected, private

visibility declarations. Multiple inheritance hierarchies can

also be built.

Appendix A contains the C++ solution to the

clock_radio problem. The code successfully compiled and

tested on a Borland Turbo C++ compiler. (Borland

International, 1990) Section A contains the declarations for

the various classes in the problem, including classes for

types time and position. Following the class name is a list

of type declarations (for example, x_yj?osit) and variable

names (for example, radio_location) . Due to the absence of any

visibility declaration, the default visibility for the

variables is private. Note that variables such as size and

color could also be included. These were omitted since

location and power already serve the purpose of demonstrating

variables whose value propagate from the whole.

All methods are given public visibility;

consequently, they belong to both the external and the

internal interfaces. 'Void' indicates that a method does not

return a value. Finally, a method with the same name as the

107

class name is a constructor. Constructors set aside space in

memory when an object instance is created and can be used for

initializing instance variables 41
. Similarly, a method with

the class name and a tilde (~) prefixed is a destructor. An

example of a destructor is given in electric_clock class.

Destructors, which can only be called by the compiler, are

used to undo side effects such as changes to global variables.

(Eckel, 1989) Generally, programmer-defined destructors are

not included; instead, a default destructor supplied by the

compiler is used. (Eckel, 1989)

(1) Inheritance. Class clock_radio in Appendix

A/Section A illustrates the design of a clock_radio class

using multiple inheritance. The public declarations in the

first line indicate that the internal and external interfaces

of superclasses are inherited as designed (variable/method

visibilities remain unchanged) . Sections B through G provide

implementations of the methods for the respective classes.

Observe that a more fully developed clock design would access

operating system clock functions to provide actual time

behavior. This was not done to simplify the problem. Note the

efficiency by which the behavior of the class is managed

through multiple inheritance. Simple extension is used to

complete the behavior of the class, and reusability is

exploited.

41In this case, it is assumed that the constructor
initializes the electric-clock to a powered state and the
alarm to off (i.e., power_on := True, and alarm_on := False)

.

108

Several other features merit attention. First,

clock_radio is a subtype of both an electric_clock and a

radio, and can consequently substitute for either one. This

follows from the identification of class and type hierarchies

enforced by C++.

Second, although not present in this design, it is

conceivable that name conflicts could exist for the location

variable and the power method. C++ resolves this through

resolution operators. Name conflicts must always be

considered when using inheritance. Unless the design

strategies noted in the previous section are followed,

preventing and resolving name conflicts inevitably requires

knowledge about superclass details.

Third, while C++ allows a class to be inherited

indirectly more than once, a given superclass can only be

directly inherited once. This poses cardinality problems.

Essentially, a clock_radio class based on inheritance must be

redesigned each time a different combination of clocks or

radios is desired.

Finally, constructor and destructor methods cannot

be inherited. (Atkinson and Atkinson, 1991) Unless compiler

supplied default constructors and destructors are preferred,

subclass methods must explicitly account for ancestor

constructors and destructors. This fact assumes importance

during hierarchy design as it can impact object initialization

109

and free memory management 42
. (Atkinson and Atkinson, 1991)

(2) Composition. The composite_clock_radio class

in Appendix A/Section A uses composition to reuse

electric clock and radio behavior. Several features alluded to

above are immediately apparent. First, the external interface

of the clock_radio is the only conduit to contained objects

for objects using a clock_radio. Hence, greater design effort

is required to engineer the desired behavior. Note that the

external interface to the composite_clock_radio class

essentially duplicates the electric_clock and radio

interfaces. Although this promotes information hiding, it

also translates to a degree of inefficient CPU use since it

amounts to providing methods whose sole purpose is to function

as a protective layer (i.e., doubles function call

processing)

.

Second, name conflicts are not a problem. If all

interactions are forced through the external interfaces of the

electric_clock and the radio respectively, name conflicts

cannot occur.

Third, the facility with which extra radios or

electric_clocks could be added as constituent parts is

evident: simply declare new variables of the required types.

Nonetheless, the implementation of clock_radio methods which

control interactions among the various parts would have to be

42 It has been recommended that virtual constructors and
destructors be declared in superclasses to ease the design
burden on subclasses. (Atkinson and Atkinson, 1991)

110

modified to account for the new structure of the entire

object. The same logical changes have to be made when using

inheritance. In this respect there is no advantage to using

composition. However, it still remains much easier to create

multiple parts using composition.

Fourth, as is the case with inheritance,

constructors and destructors must be specifically accounted

for. This can be done comparatively easily using

initialization lists. (Atkinson and Atkinson, 1991) In

distinction to inheritance, deciding which

constructors/destructors to include is simple: those of

contained objects (this assumes no inheritance) . Multiple

inheritance, on the other hand, can produce complicated

scenarios in which sequencing of construction/destruction is

important. Composition only requires that contained objects

be created prior to the containing object.

Fifth, a strategy needs to be adopted for handling

properties which propagate. Both electric_clock and radio

objects contain instance variables for location. Designers

must decide whether or not to include a location instance

variable for the clock_radio, and whether or not to propagate

location assignments to both the electric_clock and the radio

parts. Property propagation creates familiar data update

problems (ensuring consistent information is maintained) , and

111

constitutes unnecessary data duplication 43
. Notice also that

property propagation also implies some knowledge about the

details of part objects 44
. In this solution, responsibility

for maintaining location and power information is retained by

the clock_radio. Changes are propagated to its respective

parts. Note, however, that this responsibility is directly

inherited when inheritance is used. Consequently, a location

instance variable was not created for clock_radios formed by

inheritance. This appears to be a situation in which it would

be useful to design electric_clock or radio subclasses which

exclude the location instance variable. However, all the

methods in the affected class would hav to be searched to

eliminate direct references to this variable or calls to

accessor methods.

Finally, a clock_radio is no longer a subtype for

an electric_clock or a radio. Hence, substituting a

clock radio for either of its two parts would generate an

43A significant difference should be noted between
inheritance and composition. In languages which do not
provide visibility control mechanisms like those found in C++,
the external interface includes inherited methods. Hence,
messages can be sent to descendent objects that invoke
inherited methods which return state information relating to
propagated properties from instance variables declared in
ancestor classes. Designers must ensure that all such state
information is current and consistent since such calls can not
be precluded in these kinds of languages. Smalltalk is an
example of one such OOPL.

44A11 of these considerations also apply to multiple
inheritance in which more than one superclass maintains the
same state information.

112

error message at compile time

c. Smalltalk Solution

Smalltalk 115 is a dynamically typed OOPL featuring

objects, classes, metaclasses, and single inheritance 46
.

Messages can be sent to instances (instance methods) , or to

classes (class methods) 47
. Class definitions include instance

variables and class variables. A singular quality of

Smalltalk is its comprehensive environment: programming and

design are all accomplished within the confines of the

Smalltalk system of disk and hierarchy browsers employing

extensive windowing and menu controls.

Another useful feature of the Smalltalk

environment is its library of predefined classes. All classes

(predefined and user defined) comprise one large hierarchy

descended from the root class Object. New classes are defined

by filling in the appropriate information in system supplied

templates. New classes must be descended from a superclass in

the hierarchy.

"Several variants of the Smalltalk language are
commercially available. These dialects manifest widely
varying capabilities. The present discussion draws upon
Digitalk's Smalltalk/V286 . (Smalltalk/V286, 1988)

460ther versions of Smalltalk do provide for multiple
inheritance. (Stefik and Bobrow, 1986) However, the use of
multiple inheritance in these versions ". . .is not used much or
institutionalized." (Stefik and Bobrow, 1986, pg . 49)

47Classes are treated as objects in Smalltalk; hence, the
need for metaclasses.

113

(1) Inheritance. Though the requirement to place

new classes into the inheritance hierarchy facilitates shaping

a common protocol, the absence of stand-alone classes reduces

the flexibility with which designers can construct classes -

it slows development to the extent that designers must

consider potentially lengthy inheritance chains. Visibility

of variables to other objects is limited to accessor methods

provided by the class. All variables and methods are

inherited; subclasses can add new variables or methods, and

can override superclass methods.

Appendix B/Section A displays completed templates

for the various classes in the clock_radio problem. Sections

B through G display method implemtations . The code

successfully interpreted and tested on Digitalk's

Smalltalk/V28 6 interpreter. The electric_clock class inherits

from the radio class, while the radio class is assumed to have

the electric_device class (not depicted) as its superclass.

Variables are defined without type declarations and the class

interface is not included in the template. Methods are

defined by selecting the new method menu option; hence, a

method interface and its implementation are defined

simultaneously. Each class has the same methods as those

previously identified for the corresponding C++ class.

Given that Smalltalk/V286 allows only single

inheritance, one of the two superclasses must be inherited

from the other in order to replace multiple inheritance. This

114

is not a desirable state because instances of the inheriting

class must exhibit behavior of the superclass; hence, for

example, a pure radio could not be instantiated should the

radio class inherit from the electric clock class.

Additionally, such inheritance establishes hierarchies that do

not truly reflect any sort of specialization: an

electric_clock is not a specialization of a radio. Designers

should be very deliberate and consistent in selecting criteria

for structuring the single Smalltalk hierarchy. Problems

arise when the same class serves multiple roles: template for

inheritance, part object template, and user object template 48
.

Immediately, all name conflict problems previously

discussed reappear. Note that Smalltalk treats conflicting

instance variable names as an error. Note also that a

clock_radio can be safely substituted for an electric_clock or

a radio using this form of inheritance. Similarly, an

electric_clock can be safely substituted for a radio since it

inherits behavior from the radio class. The latter

possibility is not desirable for reasons presented earlier.

Inherited instance variables are accessible by

name in Smalltalk. This poses a problem for designers of

inherited classes such as clock radio. A clock radio

48A user object (my term) is a semantic notion describing
objects which interact with other objects through respective
external interfaces while maintaining independent identities
that do not involve composition. The idea is drawn from Booch
who distinguishes containing relationships from using
relationships. (Booch, 1991)

115

designed through inheritance is conceived of as a single,

unified object. Given that Smalltalk is a dynamically typed

language, a designer must have knowledge of superclass method

implementations in order to avoid inconsistent variable typing

(especially if overriding inherited variables or methods)

.

Conflicts can be avoided by using only inherited methods to

access/modify inherited variables. However, this then

requires that ancestor classes be designed to account for

descendent class (actual and potential) requirements 49
. This

sort of design thinking is adequate for specialization

hierarchies, but is exceedingly difficult for hierarchies

replacing multiple inheritance.

As is the case with C++, inheritance in Smalltalk

is entirely inadequate for designing clock_radios with

multiple clocks or radios. The limitation is made apparent by

the fact that only single inheritance is allowed.

Finally, designers should design constructor and

initializer class methods which account for ancestor classes.

The safe approach is to design initializer methods which issue

super calls to the superclass initializer; thereby, avoiding

any typing errors. Smalltalk automatically supports garbage

collection; hence, destructors are not required.

(2) Composition. Appendix B/Section A displays

the Smalltalk definition for a composite clock radio class:

49That is, an ancestor class must provide descendent
classes with all the methods they require to access/modify
inherited variables

.

116

instance variables for a clock and a radio are defined. All

interactions with the objects these variables point to are

managed through the objects' interfaces. Clearly, this

approach to designing a clock_radio is much cleaner than a

solution based upon ersatz multiple inheritance.

Again, the template in Section A illustrates that

only variable names have been defined. It has been argued

that the absence of a type-system in Smalltalk renders it

impossible for a compiler to optimize Smalltalk code.

(Johnson, 1988) The thought can be taken a step further by

asserting that the absence of a type-system also severely

undermines the type continuity that should prevail among the

parts of an object. Designers must assume responsibility for

ensuring that conceptually inappropriate type assignments or

method selections do not occur at run-time. This is, of

course, a difficult task at best. However, in the absence of

a type-system that can be used by a compiler 50
, designers

should enforce type continuity of parts through the following

steps: (1) clock__radio object creation should create and

initialize parts according to their appropriate class; (2)

state changes stored in instance variables should be effected

50Johnson describes an effort at introducing a type-system
to Smalltalk that is "...type-safe, handles polymorphic
procedures and parameterized types, and can be used by an
optimizing compiler." (Johnson, 1988, pg . 317)

117

by accessor methods which perform type checking51
; and, (3)

messages sent to a part are type correct for the part, or for

any ancestors of a part 52
.

Multiple clocks or radios can be added by defining

specialized subclasses of class clock_radio. Clock_radio

class methods which organize part behavior will need to be

extended to accommodate new structures

.

d. CLOS Solution

CLOS is a hybrid OOPL built upon the Common Lisp

programming language. (Koschmann, 1990) It features objects,

classes, generic functions, and methods. Classes consist of

local and shared slots (instance anc class variables)

.

Programmers attach methods to generic functions through method

definition 53
, and users invoke methods by calling the

51Most Smalltalk instance variables contain pointers
referring to objects. (Smalltalk/V286, 1988) Some instance
variables contain 8 bit bytes representing elementary data
values. (Smalltalk/V286, 1988) Instance variable types can
easily be changed by assigning pointers to different objects
(i.e., avoid aliasing).

"Johnson states that "a message-send is type-correct if
it is type-correct for each possible object type of the
receiver." (Johnson, 1988, pg. 318) He describes the process
of unification which establishes that a "procedure call is
type-correct if there is some assignment of types to type
variables (of the method) that makes the types of the
arguments be in the types of the parameters; the return type
of the procedure call is the return type of the definition of
the method with all the type variables replaced by the
assignment to them." (Johnson, 1988, pg. 318)

"Generic functions constitute the interface to a set of
methods. Each method has the same name as the generic function
it implements, and the same number of parameters. The generic
dispatcher selects appropriate methods on the basis of type
correspondence between message arguments and method

118

appropriate generic function. (Keene, 1989) CLOS provides for

multiple inheritance in which both slots and methods are

inherited. The order in which superclasses are listed in a

class definition determines precedence for handling problems

such as name conflicts.

CLOS is a dynamically typed OOPL. (Koschmann,

1990) Slots can be typed using the :type specifier. However,

many commercially available CLOS interpreters do not enforce

such slot typing. (Keene, 1989)

Appendix C/Section A illustrates the definitions

for the various classes in the clock radio problem. Most of

the slots in the clock_radio problem are assigned default

values using the :initform specifier. This prevents any slots

from being unbound. Sections B through G display the various

method implementations. The code successfully interpreted and

tested using an Allegro CL interpreter (Sun4 version)

.

(1) Inheritance. As is the case with C++, the use

of multiple inheritance in CLOS to build a clock_radio class

is extremely efficient. A clock_radio class can be descended

from these two superclasses as illustrated by the clock_radio

class in Section A. Again, the order in which superclasses

are listed determines the precedence which the generic

parameters. In the absence of a corresponding generic
function for a method definition (defmethod) , CLOS
automatically creates the generic function from the defmethod.
The CLOS implementation to the clock_radio problem assumes
this automatic generic function building; hence, only
defmethods are illustrated.

119

dispatcher will use in selecting methods for generic function

calls. Consequently, this form of precedence exposes

implementations to the modification errors described in

Chapter V/Section A. All of the reservations expressed with

respect to a solution using inheritance in C++ also apply to

a solution in CLOS 54
. Additionally, dynamic typing presents

the same problem as that noted for Smalltalk - designers need

to carefully monitor what information is maintained by slots 55
.

(2) Composition. The composite_clock_radio class

demonstates composition in CLOS. Essentially, a pointer to

the desired part_of object is created (using the built-in

function make-instance) and assigned to the slot variable. As

in Smalltalk, it is required that slots be created and

initialized to the appropriate types. Observe that the parts

have been given names (for example, clock_one) in anticipation

of instances which have multiple parts. This is not good

programming style in that users must maintain information

about the parts of an object, and can directly refer to these

parts. Although direct naming is not required for a

54CLOS contains a variety of mechanisms for defining and
organizing behavior: mixins, multi-methods, before methods,
after methods, around methods, and individual methods.
Developers can exercise tight control over method structure,
and generic dispatching. However, these opportunities often
result in designs which are highly individualized, tightly
coupled, and susceptible to modification errors.

55CLOS allows slots to be directly accessed using the setf
function. Interfaces which include this function directly
expose data structures and expose slots to dynamic type
changes. In short, designers must guarantee that slots are in
fact encapsulated.

120

clock_radio consisting of only one clock and one radio, such

naming appears to be unavoidable for this kind of object when

larger numbers of clocks or radios are included. Clock radio

methods can be defined which organize the interactions between

clock_one and radio_one. As before, cardinality can be

handled by defining composite_clock_radio subclasses which add

new parts and override relevant controller methods when

necessary

.

An important difference from Smalltalk is that

slots can be directly accessed/modified using the built-in

functions slot-value and setf. CLOS provides a slot specifier

; accessor which automatically creates a generic function for

reading and writing a slot. The accessor so created forms

part of the external interface. Nevertheless, slots are not

encapsulated by accessors. CLOS does not provide any

mechanisms for enforcing the notion of a private slot.

Consequently, composite objects in CLOS do not truly form an

intermediate layer between users and parts

.

5 . Composition Granularity

Another interesting problem with respect to

composition is the granularity of detail. An example may

serve to demonstrate the problem. Each clock class can be

designed such that it includes one electric plug/cord

combination. Should a clock radio consisting of multiple

clocks therefore have multiple plugs and cords? The problem

arises from the fact that classes can serve both as templates

121

for composition objects and as templates for independent

objects

.

The solution to this problem lies in reconsidering the

fundamental nature and purposes of 00A and 00D . Guiding 00

development is the goal of specifying and organizing the

behavioral properties of objects in the application domain.

Although aspects of physical structure enter into designs,

these only occur as required to fulfill behavioral

requirements. Similarly, variables are included only as

required to preserve state information. The primary focus, it

should be reemphasized, is on behavior. Hence, a clock is

either powered or it is not. This is state information which

should be included in a design. Though a plug/cord form a

conduit for powering a clock, they really do not have any

behavioral responsibilities that other objects may interact

with, and they cannot be associated with any state

preservation duties. Consequently, a design for a clock class

should not include variables for plugs and cords

.

The clock_radio problem demonstrated, however, that

different classes may maintain identical state information.

Hence, multiple instances of the same piece of information are

maintained when either inheritance or composition is used. As

suggested in the clock__radio discussion, this is an

unavoidable problem, excepting exclusion, which requires some

sort of data consistency/duplication policy on the part of

designers

.

122

The same problem reappears in another context . It has

previously been noted that both in the context of system

design and in composition design properties/responsibilities

are delegated to constituent elements. It is not improbable

that delegated properties/responsibilities may not be needed

in new design problems; thus, reducing reusability

opportunities and forcing considerable redesign. Expanding

upon the notion of moving common behavior upwards in class

hierarchies (see Chapter III) , classes at the higher levels in

a hierarchy should provide common behaviors in the most

general sense: behavior generalized to the class of objects as

they might occur in any application. Hence, a clock class

would provide behavior expected of any clock. Subclasses can

then be used to extend behavior to suit particular system or

composite object requirements. What forms a generalized

formulation of behavior applicable to a class of objects is a

knowledge problem that must be arrived at during 00A.

123

VI . CONCLUSIONS

A. SUGGESTIONS FOR FUTURE RESEARCH

1

.

Specialization

Chapter II introduced the notion of specialization.

This concept figures importantly in controlling the

development of inheritance hierarchies. Nonetheless, a

formalized definition of specialization needs to be

researched. Such a definition should distinguish

specialization from subtyping, and should explore the

interrelationships between the two con< apts when building

inheritance hierarchies

.

2 . Reusability

The various design strategies discussed in Chapter III

advanced criteria for recognizing and organizing the

relationships among the elements of a problem. These

strategies provided criteria for the explicit organization of

behavior in designed classes. However, the immediate focus of

these approaches generally fell upon the current problem.

Research needs to be directed toward uncovering criteria for

organizing knowledge in a manner that facilitates reusability

for potential applications. What level of generality should

be placed into abstract classes? At what level in a hierarchy

should abstract classes give way to concrete classes? Should

124

consideration of potential subclasses influence the design of

concrete classes? What criteria should determine which

behaviors define a class of objects, and how do these criteria

influence reusability?

3 . Knowledge Allocation

It was suggested in Chapter V that structured

techniques can be used to improve the implementation of 00

methods. However, recommendations for accomplishing this were

scrupulously avoided. Research needs to be directed at

uncovering criteria for using the results of such techniques

to improve 00 design. In particular, it may prove fruitful to

investigate whether criteria other than behavioral

correspondence (behavior to real-world object) should

influence the allocation of behaviors in a hierarchy.

4 . Functional Decomposition

Chapter IV analyzed the design practice of subclass

responsibility as a subset of techniques descended from

functional decomposition. Heuristics were suggested for

designing subclass responsible behaviors. Further

investigation should be conducted into the potential

vulnerabilities of hierarchy designs which use functional

decomposition techniques to uncover and organize subclass

responsible behaviors. In particular, the ways in which

125

hierarchy modifications can expose such designs to unexpected

errors merits research.

B. CONCLUSIONS

The 00 paradigm represents a new perspective on the

practice of developing software. It arrives with a complement

of concepts, tools, and theories which permits developers to

organize their thinking in a fashion which parallels the

manner in which humans develop and compose knowledge about the

real world. As experience with the 00 approach progresses,

the realization grows that the greatest gains occur in the

areas of analysis and design: intelligent, coherent

application of 00 concepts during these phases of development

substantially reduces the effort and costs associated with

programming and maintenance.

Though the 00 paradigm promises much, the absence of

conceptual continuity and standardization has so far resulted

in a multiplicity of distinctly diverse OOPLs and development

strategies. This thesis has attempted to formulate an

understanding of fundamental 00 concepts (Chapter II) and the

tradeoffs involved in applying those concepts (Chapter IV)

.

Such a foundation should serve to facilitate analysis/design

practices (Chapter III and Chapter IV) which realize the many

benefits attributable to 00 development (Chapter I)

.

Particular attention has been drawn to inheritance as a

vehicle for organizing knowledge. Inheritance smartly

126

applied is a powerful mechanism for reusability. It is the

position of the author that among the strategies which can be

employed to construct inheritance hierarchies, the safest and

conceptually most appropriate course lies in identifying class

hierarchies with type hierarchies. This allows the compiler

to perform optimization operations, and forces some form of

semantic consistency/structure on the inheritance hierarchy.

In this setting, developers also need to converge on a

practicable definition of specialization.

While inheritance promotes programming economy through

reusability, the single most important aspect to OOP (or any

programming methodology) is information hiding. Information

hiding shields designers from their own mistakes while

concomitantly reducing the effort expended in uncovering and

correcting mistakes. Designers utilizing inheritance must

understand and account for inheritance/information hiding

tradeoffs. Negligence in this regard can only lead to long-

run maintenance difficulties and attendant cost increases.

127

APPENDIX A C++ CODE

C++ CLASS DEFINITIONS

#ifndef CLKRAD_HPP
#define CLKRAD HPP

const am =

const fm = 1

const true = 1

const false =

const off =

const on = 1

//define switch values

class x_y_posit {

int x; //Cartesian reference system
int y;

public:
x_y_jposit (int x_pos = 0, int y_jpos = 0) {x = x_pos;

y = y_pos;

}

x_y_posit operator= (x_y_posit) ;

void display_position () ; }/

class time {

int hours; //military time
int minutes;
int seconds;

public:
time () {hours = 0; minutes = 0; seconds = 0;}
time (int hrs, int mins, int sees) {hours = hrs;

minutes = mins;
seconds = sees;

}

void change_time (time)

;

time operator= (time)

;

void display time(); };

class radio {

x_y_posit radio_location;
int radiojpowered;
int radio_on;
float fm_station;
float am_station;
int am fm switch;
float volume level;

//can be implemented many
//true equals powered

128

public:
radio (x_y_posit)

;

void change_radio_position (x_yjposit)

;

void power_radio ()

;

void remove radio power ();
void turn radio on ()

;

void turn__radio_of f () ;

void increase_volume ();
void decrease_volume ();
void select__am () ;

void select_fm();
void select_am_station (float)

;

void select_fm_station (float);
void display_radio_on_off_state ();
void display_volume_level ()/
void display_am_channel ();
void display_fm_channel ();
void display_radio_jposition ();

};

class electric_clock {

x_y_posit clock_location;
int clock_powered;
int clock_alarm;
time current_time;
time clock_alarm_time;

public

:

electric_clock (x_y_posit)

;

void change_clock_position (x_y_jposit)

;

void power_clock ();
void remove_c 1 ockjpower ()

;

void reset clock time (time)

;

void clock_alarm_on ();
void clock_alarm_off ()/
void set_clock_alarm_time (time)

;

void display__clock_alarm_time ();
void display_clock_time ();
void display_clock_position ()

;

~electric_clock ()

/

};

129

class clock_radio : public radio, public electric_clock {

int clock_radio_powered;
time radio_alarm_time;
int radio_alarm;

public:
clock_radio (x_y_posit)

;

void change_clk_rad_position (x_y_posit)

/

void power_clock_radio ()

/

void remove_clock_radio_jpower () ;

void set_radio_alarm__time (time t) /

void radio_alarm_on ()

;

void radio_alarm_of f ()

/

void display_radio_alarm_on_off_state ();
void display_radio_alarm_time ()/
void display_clock_radio_position ();

};

class composite__clock_radio {

electric_clock clock_one; //'part_of"
radio radio_one; //"part_of"
x_y_posit comp_clk_rad_position;
int comp_clk_rad_powered;
int comp_radio_alarm;
time comp_radio_alarm_time;

public

:

composite_clock_radio (x y_jposit) /

void power_comp_clock_radio () ;

void remove_comp_clock_radio_power ()

;

void change_comp_clk_rad__position (x_y_posit) ;

void turn_comp_radio_on ();
void turn_comp_radio_off ();
void increase_comp_radio_volume ();
void decrease_comp radio volume ();
void select_am_station (float)

;

void select_fm_station (float)

;

void select_am ();
void select_fm ()

;

void reset_comp_clock_time (time t)

/

void comp_clock_alarm_on ()

;

void comp_clock_alarm_off ()

/

void comp_radio_alarm_on ()

/

void comp_radio alarm off ();
void set_radio_alarm_time (time)

;

void set_comp_clock_alarm_time (time)

/

130

};

void display_comp_clock_alarm_time ();
void display_comp__clock_time ();
void display_comp radio on off state ();
void display_comp_radio volume level ();
void display_comp_radio_am_channel ();
void display comp radio fm channel ();

#endif CLKRAD_HPP

B. X_Y_POSIT CLASS METHODS

x y_posit x_y_posit : : operator= (x_y_posit xy)

{

x = xy . x

;

y = xy.y;
return *this;

}

void x_y_posit : : displayj>osition ()

{

cout « "The XY position is X:" « x « " Y:" « y« " .\n";
}

C. TIME CLASS METHODS

void time : : change_time (time t)

{

if ((hours >= 0) && (hours <= 24))
hours = t. hours;

else
hours =0;

if ((minutes >= 0) && (minutes <= 60)

)

minutes = t. minutes;
else
minutes = 0;

if ((seconds >= 0) && (seconds <= 60)

)

seconds = t. seconds;
else

seconds = 0;

}

131

time time : : operator= (time t)

{

change_time (t)

;

return *this;
}

void time : : display_time ()

{

cout « "The time is " « hours « ":" « minutes «
":" « seconds « "\n";

}

D. RADIO CLASS METHODS

radio :: radio (x_y_posit initial_position) :

radio_location (initial_position)
{

radio^powered = false;
radio_on = off;
fm_station = 8 8.0;
am_station = 55.0;
am fm_switch = fm;
volume_level = 1.0;

}

void radio :: change_radio_jpos it ion (x_yj?osit
new_jposition)

{

radio_location = new_position;
}

void radio : :power_radio ()

{

radioj>owered = true;
}

void radio :: remove_radio_jpower ()

{

radio_powered = false;
radio_on = off;

}

132

void radio :: turn_radio on ()

radio_on = on;

void radio :: turn_radio_off ()

radio_powered = false;

void radio :: increase_volume ()

volume_level * = 2.0;

void radio :: decrease volume ()

volume_level *= 0.5;

void radio :: select_am ()

am_fm_switch = am;

void radio :: select_fm ()

am fm switch = fm;

void radio: : select am_station (float channel)
{

int valid_entry = falser-
while (! valid_entry)
{

if ((55.0 <= channel) && (channel <= 160.0))
{

valid_entry = true;
am_station = channel;

}

133

else
{

cout << "Invalid entry, try again between 55 and
160 khz.\n"

cin >> channel;
} //endif

} //endwhile

void radio :: select_fm_station (float channel)
{

int valid entry = falser-
while (! valid_entry)
{

if ((88.0 <= channel) && (channel<= 108.0))
{

valid_entry = true;
fm_station = channel;

}

else
{

cout << "Invalid entry, try again between 88 and
108 mhz\n";

cin >> channel;
} //endif

} //endwhile
}

void radio :: display_radio_on_off_state ()

{

cout « "The radio is " « radio_on « ".\n";
}

void radio : :display_volume_level ()

{

cout « "The radio volume is " « volume_level« ".\n";
}

134

void radio :: display_am_channel ()

{

cout « "The am station is " « am_station « ".\n";
}

void radio :: display_fm__channel ()

{

cout « "The fm station is " << fm_station « ".\n";
}

void radio :: display_radio_position ()

{

radio_location . display_position ()

/

}

E. ELECTRIC_CLOCK CLASS METHODS

electric_clock: : electric_clock (x_y_posit
initial_position) : clock_location (initialjposition)

,

current_time () , clock_alarm_tirae ()

{

clockjpowered = false;
clock_alarm = off;

}

void electric_clock: : change_clock_position (x_y_posit
new_j?osition)

{

clock_location = new_^position;
}

void electric_clock: :power_clock ()

{

clockjpowered = true;
}

void electric_clock : : remove_clock_power ()

{

clock powered = false;
}

135

void electric_clock : : reset_clock_time (time t)

current_time = t;

void electric_clock: : clock_alarm_on ()

clock_alarm = on;

void electric_clock: : clock_alarm_of f ()

clock alarm = off;

void electric__clock: : set_clock_alarm .ime (time t)

clock_alarm_time = t;

void electric_clock: :display_clock_alarm_time ()

clock_alarm_time . display_time ()

;

void electric clock :: display clock time ()

current_time . display__time () ;

void electric_clock: : display_clock_position ()

clock_location . display_position ()

;

136

CLOCK_RADIO CLASS METHODS

clock_radio : : clock_radio (x_y_posit initial_position)
radio (initial_position) , electric clock
(initial_jposition) , radio_alarm_time (),

{

clock_radio_powered = false;
radio_alarm = off;

}

void clock_radio : : change_clk_rad_position (x_y_posit
new_position)

(

change_clock_position (new_position)

;

change_radio_position (new_position)

;

}

void clock_radio : :power_clock_radio ()

{

power clock ()

;

power_radio ();

}

void clock_radio : : remove_clock_radiojpower ()

{

remove clockjpower ();
remove_radio_jpower ();

}

void clock_radio : : set_radio_alarm_time (time t)

{

radio_alarm_time = t;

}

void clock_radio : : radio_alarm_on ()

{

radio_alarm = on;

}

137

void clock_radio : : radio_alarm__of f ()

{

radio_alarm = off;
}

void clock_radio : : display_radio_alarm_on_off_state ()

{

cout « "The radio alarm is " << radio_alarm « " ,\n";
}

void clock_radio : : display_radio_alarm_time ()

{

radio_alarm_time . display_time ()

/

}

void clock_radio : : display_clock_radio_position ()

{

display_clock_jposition () ;

}

COMPOSITE_CLOCK_RADIO CLASS METHODS

composite_clock_radio : : composite_clock_radio (x_y_posit
initial_position) : clock_one (initial_position)

,

radio_one (initial_position) , comp_radio_alarm__time ()

{

comp_clk_rad_powered = off; //false equals off
comp_radio_alarm = off; //false equals off

}

void composite clock radio: :power comp clock radio ()

{

comp_clk_rad_j?owered = true;
radio_one

.
power_radio ();

clock_one .power_clock ();

}

void compos ite_clock_radio :: remove_comp_clock_radio_power ()

{

comp_clk_rad_powered = false;
radio_one .power radio ();
clock_one .power_clock (); }

138

void composite__clock_radio :: change comp elk rad_position
(x_y_jposit new_position)

{

comp_clk_rad_position = new position;
radio_one. change_radio_position (new_jposition)

;

clock_one . change_clock_position (new_jposition)

/

}

void compos ite_clock_radio : : turn_comp_radio on ()

{

radio one . turn radio on ();

}

void composite_clock_radio : : turn_comp radio off ()

{

radio__one . turn_radio_of f ();

}

void composite clock radio :: increase_comp_radio_volume ()

{

radio_one . increase_volume ();

}

void composite clock_radio : : decrease__comp_radio_volume ()

{

radio_one . decrease_volume ();

}

void composite_clock_radio : : select_am_station (float
channel)

{

radio one. select am_station (channel);
}

void composite_clock_radio : : select_fm_station (float
channel)

{

radio_one . select fm_station (channel);
}

139

void composite_clock_radio : :select_am()

radio_one . select_am ();

void composite_clock_radio : : select_fm ()

radio_one . select_fm ();

void composite clock_radio : : reset_comp_clock_time (time t)

clock_one . reset_clock_time (t)

;

void composite_clock_radio : : comp_clock_alarm_on ()

clock_one . clock_alarm_on ();

void composite_clock_radio : : comp_clock_alarm_of f ()

clock one . clock_alarm_off ();

void compos ite_clock_radio : : comp_radio_alarm_on (

)

comp_radio_alarm = on;

void composite_clock_radio : : comp_radio_alarm_off (

)

comp_radio_alarm = off;

void composite_clock_radio : : set_radio_alarm_time (time t)

comp_radio_alarm__time = t;

140

void composite_clock_radio : : set_comp_clock_alarm_time
(time t)

clock one. set clock alarm time (t)

/

void composite_clock_radio : : display_comp_clock_alarm_time ()

clock_one . display_clock_alarm_time ()

;

void composite_clock_radio : : display_comp_clock_time ()

clock_one . display_clock_time () /

void compos ite_clock_radio : : display_comp radio on_off state ()

radio_one . display_radio_on_off_state () /

void composite_clock_radio : : display_comp_radio_volume_level ()

radio_one . display_volume_level ()

;

void composite_clock_radio : : display_comp_radio_am_channel ()

radio_one . display_am_channel ()

/

void composite_clock_radio : : display_comp_radio_fm_channel ()

radio one. display fm channel ();

141

APPENDIX B. SMALLTALK CODE

SMALLTALK CLASS DEFINITIONS

object subclass: #XyPosit
instanceVariableNames :

' x y '

classVariableNames :

''

poolDictionaries :
''

object subclass: #SimpleTime
instanceVariableNames :

' hours minutes seconds '

classVariableNames: ''

poolDictionaries: ''

object subclass: #Radio
instanceVariableNames :

' radioLocation radioPowered
radioOn fmStation amStation amfmSwitch

volumeLevel '

classVariableNames: ''

poolDictionaries: ''

radio subclass : #ElectricClock
instanceVariableNames :

' clockPowered clockAlarm
currentTime clockAlarmTime '

classVariableNames: ''

poolDictionaries: ''

electric_clock subclass: #ClockRadio
instanceVariableNames :

' clockRadioPowered
radioAlarmTime radioAlarm '

classVariableNames: ' '

poolDictionaries: ''

object subclass: #CompositeClockRadio
instanceVariableNames: ' clockOne radioOne

compClockRadioPosition compClockRadioPowered
radioAlarmTime radioAlarm '

classVariableNames: ''

poolDictionaries: ,r

142

B. XYPOSIT CLASS METHODS

setx: xpos sety: ypos
x : = xp

.

y := yp-

displayPosition
| input output char

|

input := Readstream on: 'The XY position is X:% Y:&'
output := Writestream on: String new.
[input atEnd]

whileFalse: [(char := input next) = $%
ifTrue: [x printOn: output]
ifFalse: [(char = $&)

ifTrue: [y printOn: output]
ifFalse: [output nextPut : char]]].

"output contents

C. SIMPLETIME CLASS METHODS

changeTimeHours : hrs minutes: mins seconds: sees
hours = hrs .

minutes = mins
seconds = sees

displayTime
| input output char

|

input := Readstream on: 'The time is %:&:#'
output := Writestream on: String new.
[input atEnd]

whileFalse: [(char := input next) = $%
ifTrue: [hours printOn: output]
ifFalse: [(char = $&)

ifTrue: [minutes printOn: output]
ifFalse: [(char = $#)

ifTrue: [seconds printOn: output]
ifFalse: [output nextPut : char]]]]

"output contents

D. RADIO CLASS METHODS

initialize: initialPosition
radioLocation := XyPosit new
radioLocation
radioPowered
radioOn
fmStation
amStation
amfmSwitch

initialPosxtion
' false' .

'off .

88.0.
55.0.
'am' .

143

volumeLevel := 1.0.

changeRadioPosition : newPosition
radioLocation := newPosition.

powerRadio
radioPowered := 'true'.

removeRadioPowe

r

radioPowered := 'false'.

turnRadioOn
(radioPowered = 'true')

ifTrue: [radioOn := 'on'].

turnRadioOf

f

radioOn := 'off .

increaseVolume
volumeLevel := volumeLevel * 2.0.

decreaseVolume
volumeLevel := volumeLevel * 0.5.

selectAm
amfmSwitch := 'am' .

selectFm
amfmSwitch := ' fm' .

selectAmStation: channel
(channel >= 55.0 and: [channel <= 160.0])

ifTrue: [amStation := channel]

.

selectFmStation : channel
(channel >= 88.0 and: [channel <= 108.0])

ifTrue: [fmStation := channel]

.

displayRadioOnOffState
"radioOn

displayVolumeLevel
AvolumeLeve

1

displayAmChannel
"amStation

display_fm_channel
"fmStatTon

144

display_radio_position
"radioLocation displayPosition

ELECTRICCLOCK CLASS METHODS

initialize: intialPosition
super initialize
clockPowered
clockAlarm
currentTime
currentTime

initialPosition.
= ' false'

.

= 'off .

= time new.
= changeTimeHours : minutes:

seconds :

clockAlarmTime := time new.
clock_alarmTime := changeTimeHours: minutes:

seconds :

changeClockPosition: newPosition
RadioLocation := newPosition.

powerClock
clockPowered := 'true'

.

removeClockPower
clockPowered := 'false'.

resetClockTime : newTime
currentTime := newTime.

clockAlarmOn
clockAlarm := 'on'.

clockAlarmOf

f

clockAlarm := 'off.

setClockAlarmTime : newAlarmTime
clockAlarmTime := newAlarmTime.

displayClockAlarmTime
"clockAlarmTime displayTime.

displayCIockTime
"currentTime displayTime.

display_clock_position
"radioLocation displayPosition.

145

CLOCKRADIO CLASS METHODS

initialize: initialPosition
super initialize: initialPosition.
clockRadioPowered := 'false'.
radioAlarmTime := SimpleTime new.
radioAlarmTime changeTimeHours : minutes:

seconds :

radioAlarm := 'off

.

changeClkRadPosition : newPosition
self changeRadioPosition: newPosition.

powerCIockRadio
clockRadioPowered := 'true',
self powerRadio.
self powerClock.

removedockRadioPower
clockRadioPowered := 'false',
self removeRadioPower

.

self removeClockPower

.

self turnRadioOf f

.

setRadioAlarmTime : newTime
radioAlarmTime := newTime.

radioAlarmOn
radioAlarm := 'on'.

radioAlarmOf

f

radioAlarm := 'off

.

displayRadioAlarmOnOffState
"radioAlarm

displayRadioAlarmTime
"radioAlarmTime displayTime.

displayClockRadioPosition
"self displayRadioPosition.

COMPOSITECLOCKRADIO CLASS METHODS

initialize: initialPosition
radioOne := Radio new.
radioOne initialize: initialPosition.
clockOne := ElectricClock new.
clockOne initialize: initialPosition.

146

compClockRadioPosition := XyPosit new.
compClockRadioPosition := initialPosition

.

compClockRadioPowered := 'false'.
radioAlarmTime := SimpleTime new.
radioAlarmTime changeTimeHours : minutes:

seconds :

radioAlarm := 'off.

powerCompClockRadio
clockOne powerClock.
radioOne powerRadio.
compClockRadioPowered := 'true'.

removeCompClockRadioPower
clockOne removeClockPower

.

radioOne removeRadioPower

.

compClockRadioPowered := 'false'.

changeCompClkRadPosition : newPosition
clockOne changeClockPosition : newPosition.
radioOne changeRadioPosition : newPosition.
compClockRadioPosition := newPosition.

turnCompRadioOn
radioOne turnRadioOn.

turnCompRadioOf

f

radioOne turnRadioOf f

.

increaseCompRadioVolume
radioOne increaseVolume

.

decreaseCompRadioVolume
radioOne decreaseVolume

.

selectAmStation: channel
radioOne selectAmStation: channel.

select_fm_station : channel
radioOne selectFmStation: channel.

selectAm
radioOne selectAm.

selectFm
radioOne select fm.

resetCompClockTime : newTime
clockOne resetClockTime : newTime.

147

compClockAlarmOn
clockOne clockAlarmOn

.

compClockAlarmOf

f

clockOne clockAlarmOf f

.

compRadioAlarmOn
radioAlarm := 'on' .

compRadioAlarmOf

f

radioAlarm := 'off

.

setRadioAlarmTime : newTime
radioAlarmTime := newTime.

setCompClockAlarmTime : newTime
clockOne setClockAlarmTime: newTime.

displayCompClockAlarmTime
AclockOne displayClockAlarmTime

.

displayCompClockTime
AclockOne displayClockTime

.

displayCompRadioOnOffState
AradioOne displayRadioOnOffState

.

displayCompRadioVolumeLevel
A radioOne displayVolumeLevel

.

displayCompRadioAmChannel
AradioOne displayAmChannel

.

displayCompRadioFmChannel
AradioOne displayFmChannel

.

displayCompClockRadioPosition
"compClockRadioPosition displayPosition

148

APPENDIX C. CLOS CODE

A. CLOS CLASS DEFINITIONS

(defclass x_yj?osit ()

((x :initform -.type integer)
(y rinitform :type integer)))

(defclass time ()

((hours rinitform :type integer)
(minutes rinitform rtype integer)
(seconds rinitform rtype integer)))

(defclass radio ()

((radio__location rinitform (make-instance
' x_Y_posit))

(radio_powered rinitform "false")
(radio__on rinitform "off" rtype string)
(fm_station rinitform 88 rtype float)
(am_station rinitform 55 rtype float)
(am fm_switch rinitform "off" rtype string)
(volume_level rinitform 1.0 rtype float)))

(defclass electric_clock ()

((clock_location rinitform (make-instance
' x_y_posit)

)

(clockjpowered rinitform "false" rtype string)
(clock_alarm rinitform "off" rtype string)
(current time rinitform (make-instance 'time))
(clock_alarm_time rinitform (make-instance 'time)))

(defclass clock_radio (radio electric_clock)
((clock_radio_powered rinitform "false" rtype string)
(radio alarm time rinitform (make-instance 'time))
(radio_alarm rinitform "off" rtype string)))

(defclass composite_clock_radio ()

((clock_one rinitform (make-instance
' electric_clock)

)

(radio_one rinitform (make-instance 'radio))
(comp_clk_rad positon rinitform (make-instance

x_y_jposit))

(comp_clk_rad_powered rinitform "false" rtype
string)

(comp_radi o_a 1arm rinitform "off" rtype string)

149

(comp_radio_alarm_time rinitform (make-instance
'time))

)

B. X_Y_POSIT CLASS METHODS

(defmethod change_xyvals ((p x_y_jposit) xpos ypos)
(setf (slot-value p 'x) xpos)
(setf (slot-value p '

y) ypos))

(defmethod display_position ((p x_y_posit)

)

(format t "Current XY position is X:~a Y:~a."
(slot-value p 'x)
(slot -value p 'y)))

C. TIME CLASS METHODS

(defmethod change_time ((tt time) hrs mins sees)
(setf (slot-value tt 'hours) hrs)
(setf (slot-value tt 'minutes) mins)
(setf (slot-value tt 'seconds) sees))

(defmethod display_time ((tt time)

)

(format t "The time is ~a:~a:~a."
(slot-value tt 'hours)
(slot-value tt 'minutes)
(slot-value tt 'seconds)))

D. RADIO CLASS METHODS

(defun make-object-radio ()

(make-instance ' radio)

)

(defmethod change_radioj?osition ((r radio) xpos ypos)
(with-slots (radio_location) r
(change_xyvals radio_location xpos ypos)

(defmethod power_radio ((r radio)

)

(with-slots (radio_powered) r
(setf radio_powered "true")))

(defmethod remove_radio_power ((r radio)

)

(with-slots (radio_powered) r
(setf radio_powered "false")))

(defmethod turn_radio_on ((r radio)

)

(with-slots (radio__on) r

150

(setf radio_on "on")))

(defmethod turn_radio_of f ((r radio)

)

(with-slots (radio_on) r
(setf radio_on "off")))

(defmethod increase_volume ((r radio)

)

(with-slots (volume level) r
(setf volume_level (* volume__level 2.0))))

(defmethod decrease_volume ((r radio)

)

(with-slots (volume level) r
(setf volume_level (* volume level .5))))

(defmethod select_am ((r radio)

)

(with-slots (am_fm_switch) r
(setf am_fm_switch "am")))

(defmethod select_fm ((r radio)

)

(with-slots (am_fm_switch) r
(setf am fm switch "fm"))

)

(defmethod select_am_station ((r radio) channel)
(with-slots (am_station) r
(setf am_station channel))

)

(defmethod select_fm_station ((r radio) channel)
(with-slots (fm_station) r
(setf fm_station channel))

)

(defmethod display_radio_on_off_state ((r radio)

)

(format t "The radio is ~A.

"

(slot-value r ' radio__on)))

(defmethod display_volume_level ((r radio)

)

(format t "The radio volume level is ~A. "

(slot-value r ' volume_level))

)

(defmethod display_am_channel ((r radio)

)

(format t "The am station is ~A.

"

(slot-value r ' am_atation))

)

(defmethod display_fm_channel ((r radio)

)

(format t "The fm station is ~A. "

(slot-value r ' fm_atation))

)

(defmethod display__radio_jposition ((r radio))

(with-slots (radio_location) r
(display_jposition radio_location)))

151

E. ELECTRIC_CLOCK CLASS METHODS

(defun make-object-electric_clock ()

(make-instance ' electric_clock)

)

(defmethod change_clock_position ((ec electric_clock)
xpos ypos)
(with-slots (clock_location) ec
(change_xyvals clock_location xpos ypos))

)

(defmethod power_clock ((ec electric_clock)

)

(with-slots (clock_powered) ec
(setf clock_powered "true")))

(defmethod remove_clock_power ((ec electric_clock)

)

(with-slots (clock_powered) ec
(setf clock_powered "false")))

(defmethod reset_clock_time ((ec electric_clock) hrs
mins sees)
(with-slots (current time) ec
(change_time current_time hrs mins sees))

)

(defmethod clock_alarm_on ((ec electric_clock)

)

(with-slots (clock_alarm) ec
(setf clock_alarm "on")))

(defmethod clock_alarm_off ((ec electric_clock)

)

(with-slots (clock_alarm) ec
(setf clock_alarm "off")))

(defmethod set_clock_alarm_time ((ec electric_clock) hrs
mins sees)

(with-slots (clock_alarm_time) ec
(change_time clock_alarm_time hrs mins sees)))

(defmethod display clock_alarm_time ((ec
electric_clock)

)

(with-slots (clock_alarm_time) ec
(display_time clock_alarm_time))

)

(defmethod display_clock_time ((ec electric_clock)

)

(with-slots (current time) ec
(display_time cur_time))

)

(defmethod display_clock_location ((ec electric_clock)

)

(with-slots (clock_location) ec
(display_jposition clock_location))

)

152

CLOCKJRADIO CLASS METHODS

(defun make-ob ject-clock_radio ()

(make- instance ' clock_radio)

)

(defmethod change_clk_rad_jposition ((cr clock radio)
xpos ypos)

(with-slots (radio_location clock_location) cr
(change_xyvals radio_location xpos ypos)
(change_xyvals clock_location xpos ypos))

)

(defmethod power_clock_radio ((cr clock_radio)

)

((setf radio_j50wered "true")
(setf clock_powered "true")))

(defmethod remove__clock_radio_jpower ((cr clock_radio)

)

((setf radio_powered "false")
(setf clock_powered "false")))

(defmethod set_radio_alarm_time ((cr clock_radio) hrs
mins sees)

(with-slots (radio_alarm_time) cr
(change_time radio_alarm_time hrs mins sees))

)

(defmethod radio_alarm_on ((cr clock_radio)

)

(with-slots (radio_alarm) cr
(setf radio_alarm "on")))

(defmethod radio_alarm_of f ((cr clock_radio)

)

(with-slots (radio_alarm) cr
(setf radio_alarm "off")))

(defmethod display__radio_alarm_on_off_state ((cr
clock_radio)

)

(format t "The radio alarm is ~A.

"

(slot-value cr ' radio_alarm))

)

(defmethod display_radio_alarm_time ((cr clock_radio)

)

(with-slots (radio alarm_time) cr
(display time radio_alarm_time))

)

(defmethod display_clock_radio_jposition ((cr
clock_radio)

)

(with-slots (clock_location) cr
(display position clock location))

)

153

COMPOSITE_CLOCK_RAD10 CLASS METHODS

(defun make-ob ject-composite_clock_radio ()

(make-instance ' composite_clock_radio)

)

(defmethod power_comp_clock_radio ((ccr
composite_clock_radio))

(with-slots (comp_clk_rad_jpowered clock_one radio_one)
ccr

(setf comp_clk_rad_powered "true")
(power_radio radio_one)
(power_clock clock_one))

)

(defmethod remove_comp_clock_radio_power ((ccr
composite_clock_radio))

(with-slots (corap_clk_rad_j)Owered clock_one radio_one)
ccr

(setf comp_clk_rad_powered "false")
(remove_radio_power radio_one)
(remove_clock_power clock_one))

)

(defmethod change_comp__clk_rad_j?osit :>n ((ccr
composite_clock_radio) xpos ypos,
(with-slots (radio_one clock_one

comp_clk_rad_position) ccr
(change_position comp_clk_rad_jposition xpos ypos)
(change_radio_jposition xpos ypos)))

(defmethod turn_comp_radio_on ((ccr radio)

)

compos ite_clock__radio
(with-slots (radio_one) ccr
(turn_radio_on radio_one))

)

(defmethod turn_comp_radio_of f ((ccr
composite_clock_radio))

(with-slots (radio_one) ccr
(turn_radio_of f radio_one))

)

(defmethod increase_comp radio_volume ((ccr
composite_clock__radio))

(with-slots (radio_one) ccr
(increase_volume radio_one))

)

(defmethod decrease_comp radio_volume ((ccr
composite_clock_radio))

(with-slots (radio_one) ccr
(decrease volume radio one))

)

(defmethod select am station ((ccr

154

composite_clock radio) channel)
(with-slots (radio_one) ccr
(slect_am_station radio_one channel))

)

(defmethod select_fm_station ((ccr
composite_clock_radio) channel)

(with-slots (radio_one) ccr
(select_fm_station radio_one channel)

)

)

(defmethod select_am ((ccr composite_clock radio)

)

(with-slots (radio_one) ccr
(select_am radio_one))

)

(defmethod select_fm ((ccr composite_clock_radio)

)

(with-slots (radio one) ccr
(select fm radio one))

)

(defmethod reset_comp_clock_time ((ccr
composite_clock_radio) hrs mins sees)

(with-slots (clock_one) ccr
(reset_clock_time clock_one hrs mins sees))

)

(defmethod comp_clock_alarm_on ((ccr
composite_clock_radio))

(with-slots (clock one) ccr
(clock_alarm_on clock_one))

)

(defmethod comp_clock_alarm_off ((ccr
composite_clock_radio))

(with-slots (clock_one) ccr
(clock_alarm_of f clock_one))

)

(defmethod comp_radio_alarm_on ((ccr
composite_clock_radio)

)

(with-slots (comp_radio_alarm) ccr
(setf comp_radio_alarm "on")))

(defmethod comp_radi o_a 1arm_o f f ((ccr
composite__clock_radio))

(with-slots (comp_radio_alarm) ccr
(setf comp_radio_alarm "off")))

(defmethod set_radio_alarm_time ((ccr
composite_clock_radio) hrs mins sees)

(with-slots (comp_radio_alarm_time) ccr
(change time comp radio_alarm__time hrs mins sees)))

155

(defmethod set_comp_clock_alarm_time ((ccr
composite_clock radio) hrs mins sees)

(with-slots (clock_one) ccr
(set_clock_alarm_time clock_one hrs mins sees))

)

(defmethod display_comp_clock_alarm_time ((ccr
compos ite__clock_radio))

(with-slots (clock_one) ccr
(display_clock_alarm_time clock_one))

)

(defmethod display_comp_clock_alarm_time ((ccr
composite_clock_radio)

)

(with-slots (clock_one) ccr
(display_clock_alarm_time clock_one))

)

(defmethod display comp clock_time ((ccr
composite_clock_radio)

)

(with-slots (clock_one) ccr
(display_clock_time clock_one))

)

(defmethod display_comp_radio_on_off_state ((ccr
composite_clock_radio)

)

(with-slots (radio_one) ccr
(display_radio_on_off_state radio_one))

)

(defmethod display_comp radio_volume_level ((ccr
composite_clock_radio)

)

(with-slots (radio_one) ccr
(display_volume_level radio_one))

)

(defmethod display_comp_radio_am_channel ((ccr
composite_clock_radio)

)

(with-slots (radio_one) ccr
(display_am_channel radio_one))

)

(defmethod display comp radio fm channel ((ccr
composite_clock_radio)

)

(display fm channel radio one))

)

156

LIST OF REFERENCES

Arnold, P., and others, "An Evaluation of Five Object-Oriented
Development Methods", Journal of Object-Oriented Programming,
Focus on Analysis and Design, SIGS Publication, Inc., New
York, New York, 1991, pp. 101-122.

Atkinson, L. and Atkinson, M. , Using Borland C++ , Que
Corporation, Carmel, Indiana, 1991.

Berzins, V. and Luqi, Software Engineering with Abstractions ,

Addison-Wesley Publishing Company, Reading, Massachusetts,
1991.

Booch, G., Software Engineering with Ada , The
Ben jamin/Cummings Publishing Company Inc., Menlo Park,
California, 1987.

Booch, G., Object-Oriented Design With Applications , The
Ben jamin/Cummings Publishing Company Inc., Menlo Park,
California, 1991.

Borland International, Turbo C++ Compiler , Borland
International, Inc., Scotts Valley, California, 1990.

Budd, T., An Introduction to Object-Oriented Programming ,

Addison-Wesley Publishing Company, Reading, Mass, 1991.

Coad, P. and Yourdan, E., Object-Oriented Design , Yourdon
Press, Englewood Cliffs, New Jersey, 1991.

de Champeaux, D. and others, "Panel: Structured Analysis and
Object Oriented Analysis", OOPSLA ECOOP '90 Conference
Proceedings, Addison-Wesley Publishing Company, Reading, Mass,
1990, pp. 135-139.

de Paula, E. and Nelson, M. , "Designing a Class Hierarchy",
Technology of Object-Oriented Languages & Systems
International Conference, Tools USA, Santa Barbra, California,
July 29 - August 1, 1991, pp. 203-218..

Digitalk, Smalltalk/V286 Object-Oriented Programming System
Tutorial and Programming Handbook , Digitalk, Inc., Los
Angeles, California, 1988.

157

Elmasri, R. and Navathe, S., Fundamentals of Database Systems ,

The Ben jamin/Cummings Publishing Company, Inc., Redwood City,
California, 1989.

Eckel, B., Using C++ , Osborne McGraw-Hill, Inc., Berkeley,
California, 1989.

Halbert, D, and O'Brien, P., "Using Types and Inheritance in
Object-Oriented Programming", IEEE Software, September 1987,
pp. 71-79.

Henderson-Sellers, B., and Constantine, L., "Object-Oriented
Development and Functional Decomposition", Journal of Object-
Oriented Programming, v. 3, No. 5, January 1991, pp. 11-16.

Ingalls, D., "A Simple Technique for Handling Multiple
Polymorphism", OOPSLA Conference Proceedings, New Orleans,
Louisiana, October 1-6, 1986, pp. 347-349.

Jacobson, I., "Industrial Development of Software with an
Object-Oriented Technique", Journal of Object-Oriented
Programming, v. 4, No. 1, pp. 30-40, March/April 1991.

Johnson, R. and Foote, B., "Designing Reusable Classes",
Journal of Object-Oriented Programming, Focus on Analysis and
Design, SIGS Publication, Inc., New York, New York, 1991, pp.
122-132.

Keene, S., Object-Oriented Programming in Common LISP ,

Addison-Wesley Publishing Company, Reading, Mass, 1989.

Khoshafian, S. and Copeland, G. , "Object Identity", OOPSLA
Conference Proceedings, New Orleans, Louisiana, October 1-6,
1986, pp. 406-415.

Knudsen, J. , "Name Collision in Multiple Classification
Hierarchies", ECOOP '88, European Conference on Object-
Oriented Programming Proceedings, Oslo, Norway, August 1988,
pp. 93-109.

Korson, T. and McGregor, J., "Understanding Object-Oriented:
A Unifying Paradigm", Communications of the ACM, v. 33, No. 9,

September 1990, pp. 40-60.

Koschmann, T., The Common Lisp Companion , John Wiley and Sons,
New York, New York, 1990.

158

Krakowiak, S. and others, "Design and Implementation of an
Object-Oriented, Strongly Typed Language for Distributed
Applications", Journal of Object-Oriented Programming, v. 3,
No. 3, September/October 1990, pg . 11-22.

Kuhn, T., The Structure of Scientific Revolutions , The
University of Chicago Press, Chicago, Illinois, 1962.

LaLonde, W. and Pugh, J., "Subclassing /= subtyping /= Is-a",
Journal of Object-Oriented Programming, v. 3, No. 5, January
1991, pp. 57-62.

Li, X., "Integration of Structured and Object-Oriented
Programming", Journal of Object-Oriented Programming, Focus on
Analysis and Design, SIGS Publication, Inc., New York, New
York, 1991, pp. 54-60.

Lieberman, H., "Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems", OOPSLA Conference
Proceedings, New Orleans, Louisiana, October 1-6, 1986, pp.
214-224.

Loomis, M. , "Integrating Objects with Relational Technology",
Object Magazine, v. 1, No. 2, July/August 1991, pp. 46-60.

Meyer, B., Object-Oriented Software Construction , Prentice
Hall International, New York, NY, 1988.

Micallef , J. , "Encapsulation, Reusability and Extensibility in
Object-Oriented Programming Languages", Journal of Object-
Oriented Programming, v. 1, No. 1, April/May 1988, pp. 12-35.

Nelson, M. , An Introduction to Object-Oriented Programming ,

NPS52-90-024, Naval Postgraduate School, Monterey, California,
April 1990.

Nelson, M. , "An Object-Oriented Tower of Babel", OOPS
Messenger, v. 2, No. 3, July 1991, pp. 3-11.

Nelson, M. , Moshell, M. and Orooji, A., "The Case for
Encapsulated Inheritance", Proceedings of the 24th Annual
Hawaii International Conference on System Sciences, Kauai,
Hawaii, January 8-11, 1991, Vol II, pp. 219-227.

Nelson, M. , Moshell, M. , and Orooji, A., "A Relational Object-
Oriented Management System", Ninth Annual International
Phoenix Conference on Computers and Communications,
Scottsdale, Arizona, March 1990, pp. 319-323.

159

Nierstrasz, O., "A Survey of Object-Oriented Concepts",
Object-Oriented Concepts, Databases, and Applications , Kim, W.
and Lochovsky, F. editors, Addison-Wesley Publishing Company,
Reading, Massachusettes, 1989.

Odell, J., "Object-Oriented Analysis and Design", Journal of
Object-Oriented Programming, Focus on Analysis and Design,
SIGS Publication, Inc., New York, New York, 1991, pp. 74-85.

Page-Jones, M. , The Practical Guide To Structured Systems
Design , Yourdon Press, Englewood Cliffs, New Jersey, 1988.

Palsberg, J. and Schwartzbach, M. , "Type Substitution for
Object-Oriented Programming", OOPSLA ECOOP Conference
Proceedings, October 21 - 25, 1990, pp. 151-160.

Perry, D. and Kaiser, G., "Adequate Testing and Object-
Oriented Programming", Journal of Object-Oriented Programming,
v. 2, No. 5, pp. 13-19, January/February 1990.

Pun, W. and Winder, R. , "A Design Method for Object-Oriented
Programming", Journal of Object-Oriented F ogramming, Focus on
Analysis and Design, SIGS Publication, nc, New York, New
York, 1991, pp. 61-73.

Rumbaugh, J. and others, Object-Oriented Modeling and Design ,

Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Schach, S., Software Engineering , Richard D. Irwin, Inc., and
Aksen Associates, Inc., Boston, Massachusetts, 1990.

Snyder, A. , "Encapsulation and Inheritance in Object-Oriented
Programming Languages", OOPSLA Conference Proceedings,
Portland, Oregon, September 29 - October 2, 1986.

Stefik, M. and Bobrow, D., "Object-Oriented Programming:
Themes and Variations", The AI Magazine, Winter 1986, v. 6,

No. 4, pp. 40-62.

Stein, L., "Delegation is Inheritance", OOPSLA Conference
Proceedings, Orlando, Florida, October 4-8, 1987, pp. 138-
146.

Stroustrup, B., The C++ Programming Language , Addison-Wesley
Publishing Company, Murray Hill, New Jersey, 1987.

Wasserman, A., "Object-oriented Software Development: Issues
in Reuse", Journal of Object-Oriented Programming, v. 4, No.
2, May 1991, pp. 55-57.

160

Wegner, P., "Dimensions of Object-Based Language Design",
SIGPLAN Notices, v. 22, No. 12, December 1987, pp. 168-182.

Wegner, P. and Zdonik, S., "Inheritance as an Incremental
Modification or What Like is and Isn't Like", ECOOP '88,
European Conference on Object-Oriented Programming
Proceedings, Oslo, Norway, August 1988, pp. 55-77.

Wirfs-Brock, R. and Wilkerson, B., "Object-Oriented Design:
A Responsibility-Driven Approach", OOPSLA Conference
Proceedings, New Orleans, Lousisiana, October 1-6, 1989, pp.
71-75.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing
Object-Oriented Software , Prentice Hall, Englewood Cliffs, New
Jersey, 1990.

Wu, T., "Benefits of Abstract Superclass", Journal of Object-
Oriented Programming, v. 3, No. 6, February 1991, pp. 57-61.

Yourdon, E. and Constantine, L., Structured Design , Yourdon
Press, Inc., New York, New York, 1978.

161

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station

Alexandria, VA 221314

Dudley Knox Library

Code 0142

Naval Postgraduate School

Monterey, CA 93943

Chairman, Code CS
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

MAJ Michael Nelson

Code CS/NE
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

LT Alan Fink

6111 Madawaska Road

Bethesda, Maryland 20816

&
tf" 162

NAVAL POSTGRADUATE SCHOOl
MONTEREY CA 93943-5101

2 1995

— 9

GAYLORD S

